Малахит какое вещество простое или сложное. Виды химических реакций. VII. Типы химических реакций

8 класс

Тип урока. Приобретение новых знаний.

Цели. Обучающие – объяснить сущность реакций обмена; научить учащихся писать уравнения реакций обмена.

Развивающие развить умения ставить несложные проблемы, формулировать гипотезы и проводить их опытную проверку, опираясь на знания химии; совершенствовать умения работать с лабораторным оборудованием и реактивами, оформлять результаты учебного эксперимента; формировать способности к адекватному само- и взаимоконтролю.

Воспитательные – продолжить формирование научного мировоззрения учащихся; воспитывать культуру общения через работу в парах ученик–ученик, учитель–ученик; воспитывать такие качества личности, как наблюдательность, пытливость, инициатива, стремление к самостоятельному поиску.

Методы и методические приемы. Фронтальный опрос; самостоятельная работа с карточками, взаимопроверка результатов самостоятельной работы в парах, выставление отметок; выполнение лабораторной работы в парах, самостоятельное заполнение отчета по лабораторной работе; работа со средствами наглядности (периодическая система химических элементов Д.И.Менделеева, таблица растворимости веществ, карточки).

Оборудование и реактивы. Кодоскоп, таблица для составления отчета к лабораторной работе «Реакции обмена», карточки с заданиями для самостоятельной работы по теме «Типы химических реакций», лабораторный штатив с пробирками, кристаллизатор, спиртовка, пробиркодержатель, спички; оксид меди(II), растворы гидрокcидов натрия и калия, соляной и серной кислот, хлорида железа(III), фенолфталеина.

ХОД УРОКА

Актуализация знаний

Урок начинается с фронтальной беседы по изученному материалу*. В ходе беседы учитель задает вопросы. За каждый правильный ответ полагается фишка. В конце урока по числу набранных фишек выставляются отметки. Критерии перевода числа фишек в отметку: на «5» нужно набрать 5 фишек, на «4» – 4 фишки.

Учитель. Мы изучаем главу «Изменения, происходящие с веществами». Такие изменения могут быть физическими и химическими. В чем отличие химического явления от физического?

Ученик. В результате химического явления изменяется состав вещества, а в результате физического – нет.

Учитель. По каким признакам можно определить, что произошла химическая реакция? (Каждый отвечающий должен назвать только один признак химической реакции.)

Ученики. Изменение цвета, выделение газа, выпадение или растворение осадка, появление запаха, выделение света, выделение тепла.

Учитель. Что называется химическим уравнением?

Ученик. Химическим уравнением называется условная запись химической реакции с помощью химических формул и математических знаков.

Учитель. Какие типы химических реакций вы знаете?

Ученик. Нам известны химические реакции трех типов: соединения, разложения, замещения.

Учитель. Дайте определение реакции соединения и приведите пример такой химической реакции .

Ученик. Реакцией соединения называется реакция, при которой два или более простых или сложных веществ соединяются в одно сложное. Например, при соединении двух простых веществ кислорода и водорода образуется сложное вещество вода:

2H 2 + O 2 = 2H 2 O.

Учитель. Какая реакция называется реакцией разложения? Приведите пример реакции разложения.

Ученик. Реакцией разложения называется реакция, при которой из одного сложного вещества получается несколько простых или сложных веществ. Например, при разложении сложного вещества малахита образуется три новых сложных вещества: оксид меди(II), вода и углекислый газ:

(CuOH) 2 CO 3 2CuO + H 2 O + CO 2 .

Учитель. Какая реакция называется реакцией замещения? Приведите пример такой реакции .

Ученик. Реакцией замещения называется реакция, при которой простое вещество замещает один вид атомов в сложном веществе. Например, если опустить железный гвоздь в раствор сульфата меди(II), то железо вытеснит медь из раствора соли:

Fe + CuSO 4 = FeSO 4 + Cu.

Учитель. Вы хорошо усвоили материал о типах химических реакций. Попробуйте применить свои теоретические знания на практике. Определите типы химических реакций, схемы которых приведены в карточках для самостоятельной работы. Кроме того, нужно расставить коэффициенты в уравнениях реакций.

Самостоятельная работа (7–8 мин)

Задание . Расставьте коэффициенты в уравнениях реакций и укажите тип каждой реакции.

В а р и а н т 1

СО + О 2 СО 2 , NaNO 3 NaNO 2 + O 2 ,

CuO + Al Al 2 O 3 + Cu,

AgNO 3 + Cu Cu(NO 3) 2 + Ag,

HBr H 2 + Br 2 , Ca + O 2 CaO.

В а р и а н т 2

Fe + О 2 Fe 3 О 4 , KClO 3 KCl + O 2 ,

Al + HCl AlCl 3 + H 2 , Al + O 2 Al 2 O 3 ,

Fe + HCl FeCl 2 + H 2 , KNO 3 KNO 2 + O 2 .

Критерии оценки

Максимально можно набрать 6 баллов (по 0,5 балла за правильно расставленные коэффициенты в каждом уравнении и по 0,5 балла за верно указанный тип реакции).

На «5» – 6–5,5 балла,

на «4» – 5–4,5 балла,

на «3» – 4–3 балла.

После выполнения заданий учащиеся, сидящие за одной партой, обмениваются работами. Происходит взаимная проверка работ с помощью кодоскопа и выставление отметок по вышеуказанным критериям.

Учитель. Ребята, поднимите руки, кто выполнил работу на «5». А кто справился на «4»? Итак, подводя итог сегодняшней самостоятельной работы, я могу сказать, что вам xорошо известны три типа химических реакций: реакции соединения, разложения и замещения. Перед нами стоит задача изучить еще один тип химических реакций – реакции обмена .

Изучение нового материала

(с применением фишек)

Учитель. По названию типа реакции предположите, в чем сущность реакции обмена.

Ученик. Сущность такой реакции в том, что вещества обмениваются своими составными частями.

Учитель. Какие вещества – простые или сложные – могут обмениваться своими составными частями?

Ученик. Оба вещества должны быть сложными .

Учитель. Как выглядит общая схема реакции обмена?

Ученик записывает на доске общую схему реакции обмена:

АВ + СD = АD + СВ.

Учащиеся возвращаются к обобщающей таблице (табл. 1) по типам химических реакций, сделанной за два предыдущих урока, и под руководством учителя заполняют последнюю строку в этой таблице.

Таблица 1

Kлассификация реакций на основании
количества и состава реагирующих веществ

Тип реакции Уравнения реакций в общем виде
Реакция соединения Соединение двух (нескольких) простых веществ в одно сложное вещество:

А + В = АВ.

Соединение двух бинарных веществ в одно трехэлементное сложное вещество:

АВ + СВ = АСВ 2

Реакция разложения Разложение сложного вещества на два (несколько) простых вещества:

Разложение трехэлементного сложного вещества на два бинарных вещества:

АСВ 2 = АВ + ВС

Реакция замещения Взаимодействие простого вещества со сложным, в результате которого образуются другие – простое и сложное – вещества:

АВ + С = А + СВ

Реакция обмена Взаимодействие двух сложных веществ с образованием двух других сложных веществ:

АВ + СD = АD + СВ

Учитель. Реакция обмена – это реакция между двумя сложными веществами, которые обмениваются своими составными частями.

Мы рассмотрели сущность реакции обмена с точки зрения теории. Для практической проверки, действительно ли происходят реакции обмена между сложными веществами, проведем лабораторную работу. (Учащиеся получают карточки с таблицей (табл. 2) для составления отчета по лабораторной работе «Реакции обмена».) В таблице заполнена графа, дающая представление о том, что нужно сделать. Две другие графы вы заполните после выполнения опытов.

Таблица 2

Лабораторная работа «Реакции обмена»

№ опыта Ход работы (что нужно сделать) Наблюдения (что увидели) Уравнения химических реакций, выводы
1 Налейте в пробирку раствор гидроксида натрия, добавьте каплю раствора фенолфталеина, затем прилейте раствор соляной кислоты Произошла химическая реакция:

NaOH + HCl = NaCl + H 2 O.

2 Налейте в пробирку раствор гидроксида калия, добавьте каплю раствора фенолфталеина, затем прилейте раствор серной кислоты Индикатор в растворе щелочи стал малиновым, а при добавлении кислоты обесцветился Произошла химическая реакция:

2KOH + H 2 SO 4 =
= K 2 SO 4 + 2H 2 O.

Это реакция обмена, т.к. щелочь и кислота обменялись своими составными частями

3 а) K раствору хлорида железа(III) добавьте по каплям раствор гидроксида натрия Выпал бурый осадок Произошла химическая реакция:

FeCl 3 + 3NaOH =
= Fе(OН) 3 + 3NaCl.

Это реакция обмена, т.к. соль и щелочь обменялись своими составными частями

б) K полученному осадку добавьте раствор серной кислоты Бурый осадок растворился Произошла химическая реакция:

2Fe(OН) 3 + 3Н 2 SO 4 =
= Fе 2 (SO 4) 3 + 6H 2 O.

Это реакция обмена, т.к. нерастворимое основание и кислота обменялись своими составными частями

4 В пробирку насыпьте порошок оксида меди(II), добавьте серной кислоты и нагрейте в верхнем пламени спиртовки Черный порошок растворился, образовался голубой раствор Произошла химическая реакция:

СuO + H 2 SO 4 = СuSO 4 + H 2 O.

Это реакция обмена, т.к. оксид и кислота обменялись своими составными частями

Прежде чем приступить к выполнению опытов, вспомните, что работать с растворами кислот и щелочей нужно осторожно, т.к. они опасны. С растворами работайте по принципу «не разлей», с твердыми веществами – по принципу «не рассыпь». Пробирку с веществами нагревайте в верхней части пламени спиртовки, прогревая сначала всю пробирку, а затем ее дно.

Кто может сказать, каковы правила пользования спиртовкой?

Ученик. Сначала нужно проверить резервуар спиртовки, поправить фитиль, затем зажечь. После нагревания потушить пламя спиртовки колпачком.

Проводятся опыты № 1 и 2.

Ф р о н т а л ь н а я б е с е д а

Учитель. Зачем при проведении опытов мы использовали фенолфталеин?

Ученик. Фенолфталеин используется для того, чтобы можно было увидеть, как изменяется среда раствора со щелочной на нейтральную. Поскольку исходные вещества и продукты реакции бесцветны, изменение цвета индикатора и будет признаком химической реакции .

Учитель. Проверьте правильность написания уравнений реакций к первому и второму опытам (предлагается запись уравнений реакций на кодопленке). Являются ли данные реакции реакциями обмена?

Ученик. Реакция между щелочью и кислотой относится к реакциям обмена, в ней два сложных вещества обмениваются составными частями.

Учитель. Почему реакцию между щелочью и кислотой называют реакцией нейтрализации?

Ученик. В реакции нейтрализации кислота нейтрализует щелочь, и в результате получаются соль и вода.

Учитель. Мы исследовали взаимодействие между щелочью и кислотой. Однако основания бывают не только растворимые, но и нерастворимые. Произойдет ли реакция между нерастворимым основанием и кислотой? Будет ли эта реакция реакцией обмена, да к тому же реакцией нейтрализации? Может ли кто-нибудь решить эту проблему?

Ученик. Нужно провести опыт между нерастворимым основанием и кислотой .

Учитель. Сначала взаимодействием соли железа(III) c натриевой щелочью получим нерастворимое основание. Для этого проведем опыт 3а. Затем посмотрим, может ли нерастворимое основание взаимодействовать с кислотой – опыт 3б.

(обсуждение результатов опытов)

Учитель. По каким признакам можно определить, что реакции прошли?

Ученик. В первом случае образовался осадок, во втором случае осадок растворился и получился раствор бурого цвета .

Учитель. Проверьте правильность записанных уравнений реакций (предлагается запись уравнений реакций на кодопленке). Относятся ли данные реакции к реакциям обмена?

Ученик. Эти реакции относятся к реакциям обмена, т.к. в них участвуют сложные вещества, которые обмениваются составными частями.

Учитель. Обратите внимание, что в опыте 3а в реакцию обмена вступают соль и щелочь, а в случае опыта 3б – нерастворимое основание и кислота. Является ли реакция между нерастворимым основанием и кислотой реакцией нейтрализации?

Ученик. Да, т.к. в результате этой реакции образуются соль и вода .

Учитель. Между какими веществами происходит реакция нейтрализации?

Ученик. Реакция нейтрализации происходит между кислотами и основаниями, причем как растворимыми, так и нерастворимыми.

Учитель. Реакция нейтрализации – частный случай реакции обмена. Вещества каких других классов соединений могут вступать в реакции обмена?

Ученик. Основные оксиды также вступают в реакции обмена .

Учитель. Для того чтобы решить эту проблему, проведем опыт 4. Во время проведения опыта не забывайте о правилах нагревания веществ .

Ф р о н т а л ь н а я б е с е д а

(обсуждение результатов опыта)

Учитель. Какие признаки говорят о том, что реакция прошла?

Ученик. Осадок растворился, образовался раствор голубого цвета .

Учитель. Как вы записали уравнение реакции? (Ученик у доски записывает уравнение реакции). Итак, в реакцию обмена вступают оксид металла и кислота.

Заключительная беседа

Учитель. Сколько типов химических реакций вы теперь знаете?

Ученик. Мы знаем четыре типа химических реакций: реакции соединения, разложения, замещения и обмена .

Учитель. Между веществами каких классов могут происходить реакции обмена?

Ученик. Реакции обмена могут происходить между основаниями и кислотами, кислотами и основными оксидами, солями и щелочами .

Учитель. Какая реакция называется реакцией нейтрализации?

Ученик. Реакция нейтрализации – это реакция обмена между основанием и кислотой, в результате которой образуются соль и вода .

Учитель. В реакции обмена вступают также две растворимые соли, если в результате образуется нерастворимая соль. Например:

AgNO 3 + NaCl = AgCl + NaNO 3 ,

BaCl 2 + MgSO 4 = BaSO 4 + MgCl 2 .

Учитель выставляет отметки по количеству набранных фишек.

Домашнее задание. По учебнику О.С.Габриеляна «Химия-8» § 27, упр. 2в, 3а, с. 100.

* См. № 7, 10/2006

Литература

Габриелян О.С . Химия-8. М.: Дрофа, 2002, 208 с.; Габриелян О.С., Воскобойникова Н.П., Яшукова А.В. Настольная книга учителя. 8 класс. М.: Дрофа, 2002, 416 с.; Габриелян О.С., Смирнова Т.В . Изучаем химию в 8 классе. Методическое пособие к учебнику О.С.Габриеляна «Химия-8» для учащихся и учителей. М.: Блик и Ко, 2001, 224 с.; Кузнецова Н.Е., Титова И.М., Гара Н.Н., Жегин А.Ю . Химия. 8 класс. М.: Вентана-Граф, 2003, 224 с.

МАЛАХИТ –является соединением меди, состав природного малахита несложен: это основной карбонат меди (СuОН) 2 СО 3 , или СuСО 3 ·Сu(ОН) 2 . Это соединение термически неустойчиво и легко разлагается при нагревании, даже не очень сильном. Если нагреть малахит выше 200 о С, он почернеет и превратится в черный порошок оксида меди, одновременно выделятся пары воды и углекислый газ: (СuОН) 2 СО 3 = 2CuO + CO 2 + H 2 O. Однако получить вновь малахит – очень трудная задача: это не могли сделать в течение многих десятилетий, даже после успешного синтеза алмаза.
Видеоопыт: "Разложение малахита".

Непросто получить даже соединение того же состава, что и малахит. Если слить растворы сульфата меди и карбоната натрия, то получится рыхлый объемистый голубой осадок, очень похожий на гидроксид меди Сu(OH) 2 ; одновременно выделится углекислый газ. Но примерно через неделю рыхлый голубой осадок сильно уплотнится и примет зеленый цвет. Повторение опыта с горячими растворами реагентов приведет к тому, что те же изменения с осадком произойдут уже через час.

Реакцию солей меди с карбонатами щелочных металлов изучали многие химики разных стран, однако результаты анализа полученных осадков у разных исследователей различались и иногда существенно. Если взять слишком много карбоната, осадок вообще не выпадет, а получится раствор красивого синего цвета, содержащий медь в виде комплексных анионов, например, 2– . Если карбоната взять меньше, выпадает объемистый желеобразный осадок светло-синего цвета, вспененный пузырьками углекислого газа. Дальнейшие превращения зависят от соотношения реагентов. При избытке СuSО 4 , даже небольшом, осадок со временем не изменяется. При избытке же карбоната натрия синий осадок через 4 дня резко (в 6 раз) уменьшается в объеме и превращается в кристаллы зеленого цвета, которые можно отфильтровать, высушить и растереть в тонкий порошок, который по составу близок к малахиту. Если увеличить концентрацию СuSO 4 от 0,067 до 1,073 моль/л (при небольшом избытке Nа 2 СО 3), то время перехода синего осадка в зеленые кристаллы уменьшается от 6 дней до 18 часов. Очевидно, в голубом студне со временем образуются зародыши кристаллической фазы, которые постепенно растут. А зеленые кристаллики намного ближе к малахиту, чем бесформенный студень.

Таким образом, чтобы получить осадок определенного состава, соответствующего малахиту, надо взять 10%-ный избыток Nа 2 СО 3 , высокую концентрацию реагентов (около 1 моль/л) и выдерживать синий осадок под раствором до его перехода в зеленые кристаллы. Кстати, смесь, получаемую добавлением соды к медному купоросу, издавна использовали против вредных насекомых в сельском хозяйстве под названием «бургундская смесь».

Известно, что растворимые соединения меди ядовиты. Основной карбонат меди нерастворим, но в желудке под действием соляной кислоты он легко переходит в растворимый хлорид: (СuОН) 2 СО 3 + 2HCl = 2CuCl 2 + CO 2 + H 2 O. Опасен ли в таком случае малахит? Когда-то считалось очень опасным уколоться медной булавкой или шпилькой, кончик которой позеленел, что указывало на образование солей меди – главным образом основного карбоната под действием углекислого газа, кислорода и влаги воздуха. В действительности токсичность основного карбоната меди, в том числе и того, который в виде зеленой патины образуется на поверхности медных и бронзовых изделий, несколько преувеличена. Как показали специальные исследования, смертельная для половины испытуемых крыс доза основного карбоната меди составляет 1,35 г на 1 кг массы для самца и 1,5 г – для самок. Максимальная безопасная однократная доза составляет 0,67 г на 1 кг. Конечно, человек – не крыса, но и малахит – явно не цианистый калий. И трудно представить, чтобы кто-нибудь съел полстакана растертого в порошок малахита. То же можно сказать об основном ацетате меди (историческое название – ярь-медянка), который получается при обработке основного карбоната уксусной кислотой и используется, в частности, как пестицид. Значительно опаснее другой пестицид, известный под названием «парижская зелень», который представляет собой смесь основного ацетата меди с ее арсенатом Cu(AsO 2) 2 .

Химиков давно интересовал вопрос – существует ли не основной, а простой карбонат меди СuСО 3 . В таблице растворимости солей на месте СuCO 3 стоит прочерк, что означает одно из двух: либо это вещество полностью разлагается водой, либо его вовсе не существует. Действительно, в течение целого столетия никому не удавалось получить это вещество, и во всех учебниках писали, что карбонат меди не существует. Однако в 1959 это вещество было получено, хотя и при особых условиях: при 150° С в атмосфере углекислого газа под давлением 60–80 атм.

Малахит как минерал.

Природный малахит всегда образуется там, где есть залежи медных руд, если эти руды залегают в карбонатных породах – известняках, доломитах и др. Часто это сульфидные руды, из которых наиболее распространены халькозин (другое название – халькокит) Cu 2 S, халькопирит CuFeS 2 , борнит Cu 5 FeS 4 или 2Cu 2 S·CuS·FeS, ковеллин CuS. При выветривании медной руды под действием подземных вод, в которых растворены кислород и углекислый газ, медь переходит в раствор. Этот раствор, содержащий ионы меди, медленно просачивается через пористый известняк и реагирует с ним с образованием основного карбоната меди – малахита. Иногда капельки раствора, испаряясь в пустотах, образуют натеки, нечто вроде сталактитов и сталагмитов, только не кальцитовых, а малахитовых. Все стадии образования этого минерала хорошо видны на стенках огромного меднорудного карьера глубиной до 300 – 400 м в провинции Катанга (Заир). Медная руда на дне карьера очень богатая – содержит до 60% меди (в основном в виде халькозина). Халькозин – темно-серебристый минерал, но в верхней части рудного пласта все его кристаллики позеленели, а пустоты между ними заполнились сплошной зеленой массой – малахитом. Это было как раз в тех местах, где поверхностные воды проникали через породу, содержащую много карбонатов. При встрече с халькозином они окисляли серу, а медь в виде основного карбоната оседала тут же, рядом с разрушенным кристалликом халькозина. Если же поблизости была пустота в породе, малахит выделялся там в виде красивых натеков.

Итак, для образования малахита нужно соседство известняка и медной руды. А нельзя ли использовать этот процесс для искусственного получения малахита в природных условиях? Теоретически в этом нет ничего невозможного. Было, например, предложено использовать такой прием: в отслужившие свое подземные выработки медной руды засыпать дешевый известняк. В меди тоже не будет недостатка, так как даже при самой совершенной технологии добычи невозможно обойтись без потерь. Для ускорения процесса к выработке надо подвести воду. Сколько может продлиться такой процесс? Обычно естественное образование минералов – процесс крайне медленный и идет тысячелетиями. Но иногда кристаллы минералов растут быстро. Например, кристаллы гипса могут в природных условиях расти со скоростью до 8 мкм в сутки, кварца – до 300 мкм (0,3 мм), а железный минерал гематит (кровавик) может за одни сутки вырасти на 5 см. Лабораторные исследования показали, что и малахит может расти со скоростью до 10 мкм в сутки. При такой скорости в благоприятных условиях десятисантиметровая корка великолепного самоцвета вырастет лет за тридцать – это не такой уж большой срок: даже лесопосадки рассчитаны на 50, а то и на 100 лет и даже больше.

Однако бывают случаи, когда находки малахита в природе никого не радуют. Например, в результате многолетней обработки почв виноградников бордосской жидкостью под пахотным слоем иногда образуются самые настоящие малахитовые зерна. Получается этот рукотворный малахит так же, как и природный: бордосская жидкость (смесь медного купороса с известковым молоком) просачивается в почву и встречается с известковыми отложениями под ней. В результате содержание меди в почве может достигать 0,05%, а в золе виноградных листьев – более 1%!

Образуется малахит и на изделиях из меди и ее сплавов – латуни, бронзы. Особенно быстро такой процесс идет в больших городах, в которых воздух содержит оксиды серы и азота. Эти кислотные агенты, совместно с кислородом, углекислым газом и влагой, способствуют коррозии меди и ее сплавов. При этом цвет образующегося на поверхности основного карбоната меди отличается землистым оттенком.

Малахиту в природе часто сопутствует синий минерал азурит – медная лазурь. Это тоже основной карбонат меди, но другого состава – 2СuСО 3 ·Сu(ОН) 2 . Азурит и малахит нередко находят вместе; их полосчатые срастания называют азуромалахитом. Азурит менее устойчив и во влажном воздухе постепенно зеленеет, превращаясь в малахит. Таким образом, малахит в природе вовсе не редок. Он покрывает даже старинные бронзовые вещи, которые находят при археологических раскопках. Более того, малахит часто используют как медную руду: ведь он содержит почти 56% меди. Однако эти крошечные малахитовые зернышки не представляют интереса для искателей камней. Более или менее крупные кристаллы этого минерала попадаются очень редко. Обычно кристаллы малахита очень тонкие – от сотых до десятых долей миллиметра, а в длину имеют до 10 мм, и только изредка, в благоприятных условиях, могут образоваться огромные многотонные натеки плотного вещества, состоящего из массы как бы слипшихся кристалликов. Именно такие натеки и образуют ювелирный малахит, который встречается очень редко. Так, в Катанге для получения 1 кг ювелирного малахита надо переработать около 100 т руды. Очень богатые месторождения малахита были когда-то на Урале; к сожалению, в настоящее время они практически истощены. Уральский малахит был обнаружен еще в 1635, а в 19 в. там добывали в год до 80 т непревзойденного по качеству малахита, при этом малахит часто встречался в виде довольно увесистых глыб. Самая большая из них, массой 250 т, была обнаружена в 1835, а в 1913 нашли глыбу массой более 100 т. Сплошные массы плотного малахита шли на украшения, а отдельные зерна, распределенные в породе, – так называемый землистый малахит, и мелкие скопления чистого малахита использовались для выработки высококачественной зеленой краски, «малахитовой зелени» (эту краску не следует путать с «малахитовым зеленым», который является органическим красителем, а с малахитом его роднит разве что цвет). До революции в Екатеринбурге и Нижнем Тагиле крыши многих особняков были окрашены малахитом в красивый синевато-зеленый цвет. Привлекал малахит и уральских мастеров выплавки меди. Но медь добывали только из минерала, не представляющего интереса для ювелиров и художников. Сплошные куски плотного малахита шли только на украшения.

Источники: ресурсы Интернет

http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/MALAHIT.html

Химическая реакция – это «превращение» одного или нескольких веществ в другое вещество, с иным строением и химическим составом. Получившееся вещество или вещества называют «продуктами реакции». При химических реакциях ядра и электроны образуют новые соединения (перераспределяются), но их количество, не изменяется и изотопный состав химических элементов остаётся прежним.

Все химические реакции делятся на простые и сложные.

По числу и составу исходных и полученных веществ простые химические реакции можно подразделить на несколько основных типов.

Реакции разложения – это такие реакции, при которых из одного сложного вещества получается несколько других веществ. При этом, образованные вещества могут быть и простыми, и сложными. Как правило, протекания химической реакции разложения, необходимо нагревание (это эндотермический процесс, поглощение теплоты).

Например, при нагревании порошка малахита образуются три новых вещества: оксид меди, вода и углекислый газ:

Cu 2 CH 2 O 5 = 2CuO + H 2 O + CO 2

малахит → оксид меди + вода + углекислый газ

Если бы в природе происходили только реакции разложения, то все сложные вещества, которые могут разлагаться, разложились бы и химические явления не смогли бы больше осуществляться. Но существуют и другие реакции.

При реакциях соединения из нескольких простых или сложных веществ получается одно сложное вещество. Получается, что реакции соединения являются обратными реакциям разложения.

Например, при нагревании меди на воздухе, она покрывается чёрным налётом. Медь превращается в оксид меди:

2Cu + O 2 = 2CuO

медь + кислород → оксид меди

Химические реакции между простым и сложным веществами, при которых атомы, составляющие простое вещество, замещают атомы одного из элементов сложного вещества, называются реакциями замещения.

Например, если опустить в раствор хлорида меди (CuCl 2) железный гвоздь, он (гвоздь) начнёт покрываться выделяющийся на его поверхности медью. А раствор к концу реакции из голубого становится зеленоватым: вместо хлорида меди в нём теперь содержится хлорид железа:

Fe + CuCl 2 = Cu + FeCl 2

Железо + хлорид меди → медь + хлорид железа

Атомы меди в хлориде меди заместились атомами железа.

Реакция обмена – это реакция, при которой два сложных вещества обмениваются составными частями. Чаще всего такие реакции протекают в водных растворах.

При реакциях оксидов металлов с кислотами два сложных вещества – оксид и кислота – обмениваются своими составными частями: атомы кислорода – на кислотные остатки, а атомы водорода – на атомы металла.

Например, если оксид меди (CuO) соединить с серной кислотой H 2 SO 4 и нагреть, получится раствор, из которого можно выделить сульфат меди:

CuO + H 2 SO 4 = CuSO 4 + H 2 O

оксид меди + серная кислота → сульфат меди + вода

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Цель урока: продолжить формирование понятия вещества, познакомить учащихся со сложными веществами, способами доказательства их сложности - анализом и синтезом.

Ход урока

1. Фронтальный опрос.

Какие вещества относят к простым: а) Алмаз, б) Вода, в) Поваренная соль?

На какие две группы делят простые вещества, если есть между ними четкая граница?

Какие свойства и строения имеют металлы и неметаллы?

Как выразить состав простого вещества (молекулярного и немолекулярного)?

Письменная работа.

Составьте химические формулы молекулярных простых веществ, модели которых изображены в учебнике.

Напишите формулы простых веществ, образованных элементами третьего периода.

Эти упражнения имеют особое значение, так как помогают им связать внутреннее строение вещества с его знаковой моделью (формулой).

2. Обсуждение нового материала.

Вопросы:

  1. Обсуждение элементного состава веществ на известных примерах;
  2. Экспериментальное доказательство сложности вещества- синтез сложного вещества;
  3. Анализ вещества;
  4. Обсуждение структур сложных веществ.

Демонстрируем ряд простых и сложных веществ: оксид меди, графит, кварц (или речной песок), основной карбонат меди (малахит), серу, водород, углекислый газ, воду. Какие из этих веществ состоят из одного элемента, а какие из двух или нескольких? Школьники могут назвать серу и водород, как состоящие из одного элемента, а воду, основываясь на предыдущем опыте, как состоящую из двух элементов. При этом они могут сказать, как доказать, что вода состоит из двух элементов. Делаем вывод, что по внешнему виду распознать простые и сложные вещества нельзя. Нужно их исследовать.

Как мы называем те вещества, которые состоят из одного элемента?

А как назвать вещества, что состоят из двух или нескольких элементов?

Как правило дети отвечают точно – сложные вещества. Формулируем определение. К этому нужно привлечь учащихся.

Как провести опыт, чтобы доказать – к сложным или простым относится вещество? Нужно вещество разложить.

По каким признакам мы узнаем, что вещество сложное? Если из него получились новые вещества, то оно сложное.

Здесь же нужно объяснить, что установление состава вещества с помощью разложения называется анализом, что разложение часто проводят с помощью нагревания. Очень полезно, чтобы учащиеся провели опыты сами. На ученических столах следует приготовить приборы для разложения (пробирку с газоотводной трубкой, закрепленную в штативе). В пробирку насыпаем малахит (на одних столах) и перманганат калия (на других). Названме веществ сообщаю учащимся не для запоминания, хотя они уже на первых уроках их запоминают. Перед учащимися ставится задача доказать, что данные вещества являются сложными.

Перед опытами знакомлю ребят с правилами работы со спиртовкой. Учащимся группы, исследующим малахит, нужно поставить под газоотводную трубку стаканчик с известковой водой. Другой группе, исследующей перманганат калия, - стаканчик с чистой водой.

Сколько новых веществ учащиеся получили?

При разложении малахита хорошо видны три вещества: газ, капельки воды (на стенках пробирки), черное вещество, оставшееся в пробирке. Углекислый газ проверяется помутнением известковой воды. Учитель сообщает, что черное вещество, оставшееся в пробирке – это оксид меди.

При разложении перманганата калия наблюдения затруднены маскировкой образовавшегося черного оксида и почти такого же цвета манганата, которые внешне мало отличаются от взятого перманганата калия. Учащиеся называют два вещества в результате опыта – газ и твердое черное вещество.

Выделенный газ в пустой стакан учащиеся проверяют, поднося тлеющую лучинку, которая ярко загорается.

Выделенное второе вещество исследую сама. Для этого растворяю в воде в двух стаканах полученное вещество в результате разложения и исходное вещество – перманганат калия. Перманганат калия дает малиновое окрашивание, а вещество в результате разложения дает зеленое окрашивание.

Учащиеся видят разницу двух веществ и делают вывод, что при разложении перманганата калия образуются два разных вещества. На основании исследования в группах учащиеся заполняют таблицу.

Подвожу учащихся к общему выводу: те вещества, которые разлагаются на два или несколько новых состоят из нескольких элементов и относятся к сложным веществам, а которые разложению не подлежат, состоят из одного элемента и относятся к простым.

Далее перехожу к понятию синтеза. Демонстрирую опыт: нагреваю железные опилки с порошком серы. Какое вещество образуется в результате – постое или сложное? Из каких элементов оно состоит? Школьники отвечают – из серы и железа. Значит, делаем вывод, что при помощи синтеза из простых веществ можно получить сложное. На основании опыта учащиеся дают понятие синтеза.

3. Закрепление.

Для закрепления демонстрирую плакат с рисунками структур сложных и простых веществ. Где учащиеся выделяют сложные вещества. Далее учащиеся отвечают на вопрос - что такое сложные вещества и приводят примеры. Исходя из изученного материала, делаем вывод: сложные вещества имеют молекулярные (углекислый газ) и немолекулярные структуры (оксид марганца).

Домашнее задание: стр. 4-6, упражнение 4.

13.1. Определения

К важнейшим классам неорганических веществ по традиции относят простые вещества (металлы и неметаллы), оксиды (кислотные, основные и амфотерные), гидроксиды (часть кислот, основания, амфотерные гидроксиды) и соли. Вещества, относящиеся к одному и тому же классу, обладают сходными химическими свойствами. Но вы уже знаете, что при выделении этих классов используют разные классификационные признаки.
В этом параграфе мы окончательно сформулируем определения всех важнейших классов химических веществ и разберемся, по каким признакам выделяются эти классы.
Начнем с простых веществ (классификация по числу элементов, входящих в состав вещества). Их обычно делят на металлы и неметаллы (рис. 13.1-а ).
Определение понятия " металл" вы уже знаете.

Из этого определения видно, что главным признаком, позволяющим нам разделить простые вещества на металлы и неметаллы, является тип химической связи.

В большинстве неметаллов связь ковалентная. Но есть еще и благородные газы (простые вещества элементов VIIIA группы), атомы которых в твердом и жидком состоянии связаны только межмолекулярными связями. Отсюда и определение.

По химическим свойствам среди металлов выделяют группу так называемых амфотерных металлов. Это название отражает способность этих металлов реагировать как с кислотами, так и со щелочами (как амфотерные оксиды или гидроксиды) (рис. 13.1-б ).
Кроме этого, из-за химической инертности среди металлов выделяют благородные металлы. К ним относят золото, рутений, родий, палладий, осмий, иридий, платину. По традиции к благородным металлам относят и несколько более реакционно-способное серебро, но не относят такие инертные металлы, как тантал, ниобий и некоторые другие. Есть и другие классификации металлов, например, в металлургии все металлы делят на черные и цветные, относя к черным металлам железо и его сплавы.
Из сложных веществ наибольшее значение имеют, прежде всего, оксиды (см.§2.5), но так как в их классификации учитываются кислотно-основные свойства этих соединений, мы сначала вспомним, что такое кислоты и основания .

Таким образом, мы выделяем кислоты и основания из общей массы соединений, используя два признака: состав и химические свойства.
По составу кислоты делятся на кислородсодержащие (оксокислоты ) и бескислородные (рис. 13.2).

Следует помнить, что кислородсодержащие кислоты по своему строению являются гидроксидами .

Примечание. По традиции для бескислородных кислот слово кислота" используется в тех случаях, когда речь идет о растворе соответствующего индивидуального вещества, например: вещество HCl называют хлороводородом, а его водный раствор – хлороводородной или соляной кислотой.

Теперь вернемся к оксидам. Мы относили оксиды к группе кислотных или основных по тому, как они реагируют с водой (или по тому, из кислот или из оснований они получаются). Но с водой реагируют далеко не все оксиды, зато большинство из них реагирует с кислотами или щелочами, поэтому оксиды лучше классифицировать по этому свойству.

Существует несколько оксидов, которые в обычных условиях не реагируют ни с кислотами, ни со щелочами. Такие оксиды называют несолеобразующими . Это, например, CO, SiO, N 2 O, NO, MnO 2 . В отличие от них, остальные оксиды называют солеобразующими (рис. 13.3).

Как вы знаете, большинство кислот и оснований относится к гидроксидам . По способности гидроксидов реагировать и с кислотами, и со щелочами среди них (как и среди оксидов) выделяют амфотерные гидроксиды (рис. 13.4).

Теперь нам осталось дать определение солей . Термин " соль" используется издавна. По мере развития науки, его смысл неоднократно изменялся, расширялся и уточнялся. В современном понимании соль – это ионное соединение, но традиционно к солям не относят ионные оксиды (так как их называют основными оксидами), ионные гидроксиды (основания), а также ионные гидриды, карбиды, нитриды и т. п. Поэтому упрощенно можно сказать, что

Можно дать и другое, более точное, определение солей.

Давая такое определение, соли оксония обычно относят и к солям, и к кислотам.
Соли принято подразделять по составу на кислые , средние и основные (рис. 13.5).

То есть в состав анионов кислых солей входят атомы водорода, связанные ковалентными связями с другими атомами анионов и способные отрываться под действием оснований.

Основные соли обычно имеют очень сложный состав и часто нерастворимы в воде. Типичный пример основной соли – минерал малахит Cu 2 (OH) 2 CO 3 .

Как видите, важнейшие классы химических веществ выделяются по разным классификационным признакам. Но по какому бы признаку мы не выделяли класс веществ, все вещества этого класса обладают общими химическими свойствами.

В этой главе вы познакомитесь с наиболее характерными химическими свойствами веществ-представителей этих классов и с самыми важными способами их получения.

МЕТАЛЛЫ, НЕМЕТАЛЛЫ, АМФОТЕРНЫЕ МЕТАЛЛЫ, КИСЛОТЫ, ОСНОВАНИЯ, ОКСОКИСЛОТЫ, БЕСКИСЛОРОДНЫЕ КИСЛОТЫ, ОСНОВНЫЕ ОКСИДЫ, КИСЛОТНЫЕ ОКСИДЫ, АМФОТЕРНЫЕ ОКСИДЫ, АМФОТЕРНЫЕ ГИДРОКСИДЫ, СОЛИ, КИСЛЫЕ СОЛИ, СРЕДНИЕ СОЛИ, ОСНОВНЫЕ СОЛИ
1.Где в естественной системе элементов расположены элементы, образующие металлы, а где – элементы, образующие неметаллы?
2.Напишите формулы пяти металлов и пяти неметаллов.
3.Составьте структурные формулы следующих соединений:
(H 3 O)Cl, (H 3 O) 2 SO 4 , HCl, H 2 S, H 2 SO 4 , H 3 PO 4 , H 2 CO 3 , Ba(OH) 2 , RbOH.
4.Каким оксидам соответствуют следующие гидроксиды:
H 2 SO 4 , Ca(OH) 2 , H 3 PO 4 , Al(OH) 3 , HNO 3 , LiOH?
Каков характер (кислотный или основный) каждого из этих оксидов?
5.Среди следующих веществ найдите соли. Составьте их структурные формулы.
KNO 2 , Al 2 O 3 , Al 2 S 3 , HCN, CS 2 , H 2 S, K 2 , SiCl 4 , CaSO 4 , AlPO 4
6.Составьте структурные формулы следующих кислых солей:
NaHSO 4 , KHSO 3 , NaHCO 3 , Ca(H 2 PO 4) 2 , CaHPO 4 .

13.2. Металлы

В кристаллах металлов и в их расплавах атомные остовы связывает единое электронное облако металлической связи. Как и отдельный атом элемента, образующего металл, кристалл металла обладает способностью отдавать электроны. Склонность металла отдавать электроны зависит от его строения и, прежде всего, от размера атомов: чем больше атомные остовы (то есть чем больше ионные радиусы), тем легче металл отдает электроны.
Металлы – простые вещества, поэтому степень окисления атомов в них равна 0. Вступая в реакции, металлы почти всегда изменяют степень окисления своих атомов. Атомы металлов, не обладая склонностью принимать электроны, могут только их отдавать или обобществлять. Электроотрицательность этих атомов невелика, поэтому даже при образовании ими ковалентных связей атомы металлов приобретают положительную степень окисления. Следовательно, все металлы в той или иной степени проявляют восстановительные свойства . Они реагируют:
1) С неметаллами (но не все и не со всеми):
4Li + O 2 = 2Li 2 O,
3Mg + N 2 = Mg 3 N 2 (при нагревании),
Fe + S = FeS (при нагревании).
Наиболее активные металлы легко реагируют с галогенами и кислородом, а с очень прочными молекулами азота реагирует только литий и магний.
Реагируя с кислородом, большинство металлов образует оксиды, а наиболее активные – пероксиды (Na 2 O 2 , BaO 2) и другие более сложные соединения.
2) С оксидами менее активных металлов:
2Ca + MnO 2 = 2CaO + Mn (при нагревании),
2Al + Fe 2 O 3 = Al 2 O 3 + 2Fe (с предварительным нагреванием).
Возможность протекания этих реакций определяется общим правилом (ОВР протекают в направлении образования более слабых окислителя и восстановителя) и зависит не только от активности металла (более активный, то есть легче отдающий свои электроны металл восстанавливает менее активный), но и от энергии кристаллической решетки оксида (реакция протекает в направлении образования более " прочного" оксида).
3) С растворами кислот (§ 12.2):
Mg + 2H 3 O = Mg 2B + H 2 + 2H 2 O, Fe + 2H 3 O = Fe 2 + H 2 + 2H 2 O,
Mg + H 2 SO 4p = MgSO 4p + H 2 , Fe + 2HCl p = FeCl 2p + H 2 .
В этом случае возможность реакции легко определяется по ряду напряжений (реакция протекает, если металл в ряду напряжений стоит левее водорода).
4) C растворами солей (§ 12.2):

Fe + Cu 2 = Fe 2 + Cu, Cu + 2Ag = Cu 2 +2Ag,
Fe + CuSO 4p = Cu + FeSO 4p , Cu + 2AgNO 3p = 2Ag + Cu(NO 3) 2p .
Для определения возможности протекания реакции здесь также используется ряд напряжений.
5) Кроме этого, наиболее активные металлы (щелочные и щелочноземельные) реагируют с водой (§ 11.4):
2Na + 2H 2 O = 2Na + H 2 + 2OH , Ca + 2H 2 O = Ca 2 + H 2 + 2OH ,
2Na + 2H 2 O = 2NaOH p + H 2 , Ca + 2H 2 O = Ca(OH) 2p + H 2 .
Во второй реакции возможно образование осадка Ca(OH) 2 .
Большинство металлов в промышленности получают, восстанавливая их оксиды:
Fe 2 O 3 + 3CO = 2Fe + 3CO 2 (при высокой температуре),
MnO 2 + 2C = Mn + 2CO (при высокой температуре).
В лаборатории для этого часто используют водород:

Наиболее активные металлы, как в промышленности, так и в лаборатории, получают с помощью электролиза (§ 9.9).
В лаборатории менее активные металлы могут быть восстановлены из растворов их солей более активными металлами (ограничения см. в § 12.2).

1.Почему металлы не склонны проявлять окислительные свойства?
2.От чего в первую очередь зависит химическая активность металлов?
3.Осуществите превращения
а) Li Li 2 O LiOH LiCl; б) NaCl Na Na 2 O 2 ;
в) FeO Fe FeS Fe 2 O 3 ; г) CuCl 2 Cu(OH) 2 CuO Cu CuBr 2 .
4.Восстановите левые части уравнений:
а) ... = H 2 O + Cu;
б) ... = 3CO + 2Fe;
в) ... = 2Cr + Al 2 O 3
. Химические свойства металлов.

13.3. Неметаллы

В отличие от металлов, неметаллы очень сильно отличаются друг от друга по своим свойствам – как физическим, так и химическим, и даже по типу строения. Но, не считая благородных газов, во всех неметаллах связь между атомами ковалентная.
Атомы, входящие в состав неметаллов, обладают склонностью к присоединению электронов, но, образуя простые вещества, " удовлетворить" эту склонность не могут. Поэтому неметаллы (в той или иной степени) обладают склонностью присоединять электроны, то есть могут проявлять окислительные свойства . Окислительная активность неметаллов зависит, с одной стороны, от размеров атомов (чем меньше атомы, тем активнее вещество), а с другой – от прочности ковалентных связей в простом веществе (чем прочнее связи, тем менее активно вещество). При образовании ионных соединений атомы неметаллов действительно присоединяют " лишние" электроны, а при образовании соединений с ковалентными связями – лишь смещают в свою сторону общие электронные пары. И в том, и в другом случае степень окисления уменьшается.
Неметаллы могут окислять:
1) металлы (вещества более или менее склонные отдавать электроны):
3F 2 + 2Al = 2AlF 3 ,
O 2 + 2Mg = 2MgO (с предварительным нагреванием),
S + Fe = FeS (при нагревании),
2C + Ca = CaC 2 (при нагревании).
2) другие неметаллы (менее склонные принимать электроны):
2F 2 + C = CF 4 (при нагревании),
O 2 + S = SO 2 (с предварительным нагреванием),
S + H 2 = H 2 S (при нагревании),
3) многие сложные вещества:
4F 2 + CH 4 = CF 4 + 4HF,
3O 2 + 4NH 3 = 2N 2 + 6H 2 O (при нагревании),
Cl 2 + 2HBr = Br 2 + 2HCl.
Здесь возможность протекания реакции определяется прежде всего прочностью связей в реагентах и продуктах реакции и может быть определена путем расчета G .
Самый сильный окислитель – фтор. Ненамного уступают ему кислород и хлор (обратите внимание на их положение в системе элементов).
В значительно меньшей степени окислительные свойства проявляют бор, графит (и алмаз), кремний и другие простые вещества, образованные элементами, примыкающими к границе между металлами и неметаллами. Атомы этих элементов менее склонны присоединять электроны. Именно эти вещества (особенно графит и водород) способны проявлять восстановительные свойства :
2С + MnO 2 = Mn + 2CO,
4H 2 + Fe 3 O 4 = 3Fe + 4H 2 O.
Остальные химические свойства неметаллов вы изучите в следующих разделах при знакомстве с химией отдельных элементов (как это было в случае кислорода и водорода). Там же вы изучите и способы получения этих веществ.

1.Какие из приведенных веществ являются неметаллами: Be, C, Ne, Pt, Si, Sn, Se, Cs, Sc, Ar, Ra?
2.Приведите примеры неметаллов, при обычных условиях представляющих собой а) газы, б) жидкости, в) твердые вещества.
3.Приведите примеры а) молекулярных и б) немолекулярных простых веществ.
4.Приведите по три примера химических реакций, в которых окислительные свойства проявляет а) хлор и б) водород.
5.Приведите три примера химических реакций, отсутствующие в тексте параграфа, в которых водород проявляет восстановительные свойства.
6.Осуществите превращения:
а) P 4 P 4 O 10 H 3 PO 4 ; б) H 2 NaH H 2 ; в) Cl 2 NaCl Cl 2 .
Химические свойства неметаллов.

13.4. Основные оксиды

Вы уже знаете, что все основные оксиды – твердые немолекулярные вещества с ионной связью.
К основным оксидам относятся:
а) оксиды щелочных и щелочноземельных элементов,
б) оксиды некоторых других элементов, образующих металлы, в низших степенях окисления, например: СrO, MnO, FeO, Ag 2 O и др.

В их состав входят однозарядные, двухзарядные (очень редко трехзарядные катионы) и оксид-ионы. Наиболее характерные химические свойства основных оксидов как раз и связаны с присутствием в них двухзарядных оксид-ионов (очень сильных частиц-оснований). Химическая активность основных оксидов зависит прежде всего от прочности ионной связи в их кристаллах.
1) Все основные оксиды реагируют с растворами сильных кислот (§ 12.5):
Li 2 O + 2H 3 O = 2Li + 3H 2 O, NiO + 2H 3 O = Ni 2 +3H 2 O,
Li 2 O + 2HCl p = 2LiCl p + H 2 O, NiO + H 2 SO 4p = NiSO 4p + H 2 O.
В первом случае кроме реакции с ионами оксония протекает еще и реакция с водой, но, так как ее скорость значительно меньше, ею можно пренебречь, тем более, что в итоге все равно получаются те же продукты.
Возможность реакции с раствором слабой кислоты определяется как силой кислоты (чем сильнее кислота, тем она активнее), так и прочностью связи в оксиде (чем слабее связь, тем активнее оксид).
2) Оксиды щелочных и щелочноземельных металлов реагируют с водой (§ 11.4):
Li 2 O + H 2 O = 2Li + 2OH BaO + H 2 O = Ba 2 + 2OH
Li 2 O + H 2 O = 2LiOH p , BaO + H 2 O = Ba(OH) 2p .
3) Кроме того, основные оксиды реагируют с кислотными оксидами:
BaO + CO 2 = BaCO 3 ,
FeO + SO 3 = FeSO 4 ,
Na 2 O + N 2 O 5 = 2NaNO 3 .
В зависимости от химической активности тех и других оксидов реакции могут протекать при обычной температуре или при нагревании.
В чем причина протекания таких реакций? Рассмотрим реакцию образования BaCO 3 из BaO и CO 2 . Реакция протекает самопроизвольно, а энтропия в этой реакции уменьшается (из двух веществ, твердого и газообразного, образуется одно кристаллическое вещество), следовательно, реакция экзотермическая. В экзотермических реакциях энергия образующихся связей больше, чем энергия рвущихся, следовательно, энергия связей в BaCO 3 больше, чем в исходных BaO и CO 2 . И в исходных веществах, и в продуктах реакции два типа химической связи: ионная и ковалентная. Энергия ионной связи (энергия решетки) в BaO несколько больше, чем в BaCO 3 (размер карбонатного иона больше, чем оксид-иона), следовательно, энергия системы O 2 + CO 2 больше, чем энергия CO 3 2 .

+ Q

Иными словами, ион CO 3 2 более устойчив, чем отдельно взятые ион O 2 и молекула CO 2 . А большая устойчивость карбонат-иона (его меньшая внутренняя энергия) связана с распределением заряда этого иона (– 2 е ) по трем атомам кислорода карбонат-иона вместо одного в оксид-ионе (см. также § 13.11).
4) Многие основные оксиды могут быть восстановлены до металла более активным металлом или неметаллом-восстановителем:
MnO + Ca = Mn + CaO (при нагревании),
FeO + H 2 = Fe + H 2 O (при нагревании).
Возможность протекания таких реакций зависит не только от активности восстановителя, но и от прочности связей в исходном и образующемся оксиде.
Общим способом получения почти всех основных оксидов является окисление соответствующего металла кислородом. Таким способом не могут быть получены оксиды натрия, калия и некоторых других очень активных металлов (в этих условиях они образуют пероксиды и более сложные соединения), а также золота, серебра, платины и других очень малоактивных металлов (эти металлы не реагируют с кислородом). Основные оксиды могут быть получены термическим разложением соответствующих гидроксидов, а также некоторых солей (например, карбонатов). Так, оксид магния может быть получен всеми тремя способами:
2Mg + O 2 = 2MgO,
Mg(OH) 2 = MgO + H 2 O,
MgCO 3 = MgO + CO 2 .

1.Составьте уравнения реакций:
а) Li 2 O + CO 2 б) Na 2 O + N 2 O 5 в) CaO + SO 3
г) Ag 2 O + HNO 3 д) MnO + HCl е) MgO + H 2 SO 4
2.Составьте уравнения реакций, протекающих при осуществлении следующих превращений:
а) Mg MgO MgSO 4 б) Na 2 O Na 2 SO 3 NaCl
в) CoO Co CoCl 2 г) Fe Fe 3 O 4 FeO
3.Порцию никеля массой 8,85 г прокалили в токе кислорода до получения оксида никеля(II), затем обработали избытком соляной кислоты. К полученному раствору добавили раствор сульфида натрия до прекращения выделения осадка. Определите массу этого осадка.
Химические свойства основных оксидов.

13.5. Кислотные оксиды

Все кислотные оксиды - вещества с ковалентной связью.
К кислотным оксидам относятся:
а) оксиды элементов, образующих неметаллы,
б) некоторые оксиды элементов, образующих металлы, если металлы в этих оксидах находятся в высших степенях окисления, например, CrO 3 , Mn 2 O 7 .
Среди кислотных оксидов есть вещества, представляющие собой при комнатной температуре газы (например: СО 2 , N 2 O 3 , SO 2 , SeO 2), жидкости (например, Mn 2 O 7) и твердые вещества (например: B 2 O 3 , SiO 2 , N 2 O 5 , P 4 O 6 , P 4 O 10 , SO 3 , I 2 O 5 , CrO 3). Большинство кислотных оксидов - молекулярные вещества (исключения составляют B 2 O 3 , SiO 2 , твердый SO 3 , CrO 3 и некоторые другие; существуют и немолекулярные модификации P 2 O 5). Но и немолекулярные кислотные оксиды при переходе в газообразное состояние становятся молекулярными.
Для кислотных оксидов характерны следующие химические свойства .
1) Все кислотные оксиды реагируют с сильными основаниями, как с твердыми:
CO 2 + Ca(OH) 2 = CaCO 3 + H 2 O
SiO 2 + 2KOH = K 2 SiO 3 + H 2 O (при нагревании),
так и с растворами щелочей (§ 12.8):
SO 3 + 2OH = SO 4 2 + H 2 O, N 2 O 5 + 2OH = 2NO 3 + H 2 O,
SO 3 + 2NaOH р = Na 2 SO 4р + H 2 O, N 2 O 5 + 2KOH р = 2KNO 3р + H 2 O.
Причина протекания реакций с твердыми гидроксидами та же, что с оксидами (см. § 13.4).
Наиболее активные кислотные оксиды (SO 3 , CrO 3 , N 2 O 5 , Cl 2 O 7) могут реагировать и с нерастворимыми (слабыми) основаниями.
2) Кислотные оксиды реагируют с основными оксидами (§ 13.4):
CO 2 + CaO = CaCO 3
P 4 O 10 + 6FeO = 2Fe 3 (PO 4) 2 (при нагревании)
3) Многие кислотные оксиды реагируют с водой (§11.4).
N 2 O 3 + H 2 O = 2HNO 2 SO 2 + H 2 O = H 2 SO 3 (более правильная запись формулы сернистой кислоты -SO 2 . H 2 O
N 2 O 5 + H 2 O = 2HNO 3 SO 3 + H 2 O = H 2 SO 4
Многие кислотные оксиды могут быть получены путем окисления кислородом (сжигания в кислороде или на воздухе) соответствующих простых веществ (C гр, S 8 , P 4 , P кр, B, Se, но не N 2 и не галогены):
C + O 2 = CO 2 ,
S 8 + 8O 2 = 8SO 2 ,
или при разложении соответствующих кислот:
H 2 SO 4 = SO 3 + H 2 O (при сильном нагревании),
H 2 SiO 3 = SiO 2 + H 2 O (при высушивании на воздухе),
H 2 CO 3 = CO 2 + H 2 O (при комнатной температуре в растворе),
H 2 SO 3 = SO 2 + H 2 O (при комнатной температуре в растворе).
Неустойчивость угольной и сернистой кислот позволяет получать CO 2 и SO 2 при действии сильных кислот на карбонаты Na 2 CO 3 + 2HCl p = 2NaCl p + CO 2 +H 2 O
(реакция протекает как в растворе, так и с твердым Na 2 CO 3), и сульфиты
K 2 SO 3тв + H 2 SO 4конц = K 2 SO 4 + SO 2 + H 2 O (если воды много, диоксид серы в виде газа не выделяется).

tattooe.ru - Журнал современной молодежи