Описание и применение принципа Гюйгенса — Френеля. Принцип гюйгенса - френеля В чем сущность принципа гюйгенса

Принцип Гюйгенса

Обосновывая волновую теорию света, Гюйгенс предложил принцип, который позволял наглядно решать некоторые задачи распространения и преломления света. Смысл его в том, что: Если в какой - либо момент времени известен световой волновой фронт, то для того, чтобы определить его положение через некоторый промежуток времени равный $\ \triangle t$, то каждую точку фронта следует рассматривать как источник сферической волны, построить вокруг такого вторичного источника волн сферу, имеющую радиус $c\triangle t$, где $c$ - скорость света в вакууме. При этом поверхность, которая огибает вторичные сферические волны, будет являться фронтом исходной волны через заданный промежуток времени $\triangle t$.

По физическому содержанию принцип Гюйгенса выражает взгляд на свет как непрерывный процесс в пространстве. При использовании принципа Гюйгенса можно объяснить почему, волны света попадают в область геометрической тени.

Основной проблемой принципа Гюйгенса является то, что он не учитывает явления интерференции света. Этот принцип не дает сведений об амплитуде и интенсивности волн.

Принцип Гюйгенса - Френеля, его аналитическое выражение

Определение 1

Френель развил принцип Гюйгенса, и это положение стало формулироваться так: Любая точка, принадлежащая волновому фронту, превращается в источник вторичных волн (это из принципа Гюйгенса), при этом вторичные источники являются когерентными между собой и испускаемые ими вторичные волны интерферируют. Для поверхности, совпадающей с волновой поверхностью, мощности вторичного излучения равных по площади участков одинаковы. Причем свет, распространяющийся от каждого вторичного источника идет в направлении внешней нормали.

Рэлей обобщил вышеназванный принцип:

Окружим все $S_1,S_2,S_3,\dots $ замкнутой поверхностью $(F)$ произвольной формы. При этом любую точку поверхности $F$ можно считать вторичным источником волн, которые распространяются по всем направлениям. Данные волны когерентны, так как возбуждены одними и теми же первичными источниками. Световое поле, которое появляется, как результат их пространственной интерференции, за пределами поверхности $F$ совпадает с полем реальных источников света.

Так, реальные источники света можно заменить светящейся поверхностью, которая их окружает. Причем, по всей этой поверхности как бы непрерывно распределены когерентные вторичные источники световых волн. Отличие этой гипотетической поверхности в том, что она прозрачна относительно любого излучения.

Предположим, что источник света монохроматический, среда однородная и изотропная. Таким образом, в соответствии со скорректированным принципом каждый элемент поверхности волны $S$ (рис.1) является источником вторичной сферической волны, имеющей амплитуду пропорциональную размерам данного элемента ($dS$).

Рисунок 1.

От любого участка $dS$ волновой поверхности в точку $А$ (рис.1), которая находится перед поверхностью $S$, приходит колебание, которое можно описать следующим уравнением:

где $\left(\omega t+{\alpha }_0\right)$ - фаза колебаний в месте нахождения поверхности $S$, $k$ - волновое число, $r$ - расстояние от элемента поверхности ($dS)$ до точки $A$, $a_0$ - амплитуда колебания света в месте нахождения элемента $dS$. $K$ - коэффициент, зависящий от угла $\varphi $ между нормалью $\overrightarrow{n}$ к площадке $dS$ и направлением от нее к точке $4А$. Если $\varphi =0,\ $то мы имеем $K=K_{max}$, при$\ \ \varphi =\frac{\pi }{2}$ $K=0.$

Суммарное колебание в точке А находится как суперпозиция колебаний, которые берутся для всей волновой поверхности $S$, то есть:

Формула (2) является интегральной формулировкой принципа Гюйгенса - Френеля.

Трактовка принципа Гюйгенса - Френеля

Френель искусственное предположение Гюйгенса об огибающей вторичных волн, заменил четким физическим положением, по которому вторичные волны, складываясь, интерферируют. При этом свет виден в максимумах интерференции, там, где волны взаимно гасят друг друга, имеется темнота. Так, объяснен физический смысл огибающей. К огибающей вторичные волны подходят в одинаковых фазах, поэтому интерференция вызывает большую интенсивность света. Принцип Гюйгенса - Френеля поясняет отсутствие обратной волны. Вторичные волны, которые распространяются от волнового фронта вперед, идут в свободное от возмущения пространство. При этом они интерферируют только между собой. Вторичные волны, которые идут назад, попадают в пространство, где уже присутствует прямая волна, так вторичные волны гасят прямую волну, следовательно, после прохождения волны пространство на ней не имеет возмущений.

В формулировке Рэлея рассматриваемый принцип означает, что волна, которая отделилась от своего источника, далее существует автономно, не зависит от присутствия источников.

Принцип Гюйгенса - Френеля позволяет объяснить явление дифракции.

Пример 1

Задание: Запишите выражение для напряженности электрического поля ($E$) в волне, если считать, что волна сферическая и распространяется свободно.

Решение:

Рисунок 2.

Рассмотрим свободное распространение сферической волны в однородной среде (рис.2), его можно описать, используя уравнение:

Вспомогательной волновой поверхностью в нашем случае является поверхность S, имеющая радиус $r_0$. По утверждению Френеля каждый элемент этой поверхности ($dS$) испускает вторичную сферическую волну. При этом волновое поле, испускаемое элементом $dS$ в точке $А$ найдем как:

Используя гипотезу Френеля имеем:

где $K\left(\alpha \right)$ - функция, зависящая от длины волны и угла между нормалью к фронту волны и направлением распространения вторичной волны (рис.2).

Полное волновое поле в точке $А$ представим интегралом:

Примем в качестве элемента $dS$ площадь кольца, которое вырезается из волнового фронта двумя бесконечно близкими концентрическими сферами центры которых находятся в точке $А$ (рис.2). В таком случае, можно записать, что:

В качестве переменной интегрирования примем расстояние $r_1.$ Величины $r_0$ и $r$ считаем постоянными. Из треугольника $DOA$ найдем:

\[{r_1}^2={r_0}^2+{\left(r_0+r\right)}^2-2r_0\left(r_0+r\right)cos\beta \left(1.6\right).\]

Продифференцируем выражение (1.6), имеем:

Подставим выражение (1.7) для $dS$ в формулу (1.4), получим:

где функцию $K\left(\alpha \right)\ \ рассматриваем\ как$ функцию $r_1$. При этом $r_{max}=r+2r_0.$

Ответ: $E=\frac{2\pi A_0}{\left(r_0+r\right)}e^{i\left(\omega t-kr_0\right)}\int\limits^{r_{max}}_r{K\left(r_1\right)e^{-ikr_1}}dr_1.$

Пример 2

Задание: Как используя принцип Гюйгенса - Френеля объяснить явление дифракции?

Решение:

Допустим, что плоская волна падает на экран перпендикулярно отверстию в нем. Согласно принципу Гюйгенса - Френеля каждая точка участка, волнового фронта, который выделяется отверстием в экране, становится источником вторичных волн. Если среда является однородной и изотропной вторичные волны являются сферическими. При построении огибающей вторичных волн для фиксированного момента времени получится, что фронт волы заходит в область геометрической тени, что означает, что волна огибает отверстие.

В лекции 2 мы рассматривали явления перераспределения интенсивности светового потока в результате суперпозиции волн . Это явление мы называли интерференцией и рассмотрели интерференционную картину от двух источников. Настоящая лекция - непосредственное продолжение предыдущей. Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн.

По историческим причинам перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых конечным числом дискретных когерентных источников принято называть интерференцией . Перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых когерентными источниками, расположенными непрерывно, принято называть дифракцией волн. (Когда источников мало, напр. два, то результат их совместного действия обычно называют интерференцией, а если источников много, то чаще говорят о дифракции .)

Дифракцией называется любое отклонение распространения волн вблизи препятствий от законов геометрической оптики.

В геометрической оптике пользуются понятием светового луча - узкого пучка света, распространяющегося прямолинейно. Прямолинейность распространения света объясняется теорией Ньютона и подтверждается наличием тени позади непрозрачного источника, находящегося на пути света от точечного источника. Но - противоречие с волновой теорией, т.к. по принципу Гюйгенса каждую точку поля волны можно рассматривать как источник вторичных волн, распространяющихся по всем направлениям, в том числе и в область геометрической тени препятствия (волны должны огибать препятствия). Как может возникать тень? Теория Гюйгенса не могла дать ответа. Но теория Ньютона не могла объяснить явление интерференции и нарушение закона прямолинейного распространения света при прохождении света сквозь достаточно узкие щели и отверстия, а так же при освещении небольших непрозрачных препятствий.

В этих случаях на экране, установленном позади отверстий или препятствий, вместо четко разграниченных областей света и тени наблюдается система интерференционных максимумов и минимумов освещенности. Даже для препятствий и отверстий, имеющих большие размеры, нет резкого перехода от тени к свету. Всегда существует некоторая переходная область, в которой можно обнаружить слабые интерференционные максимумы и минимумы. Т. е. при прохождении волн вблизи границ непрозрачных или прозрачных тел, сквозь малые отверстия и т.д., волны отклоняются от прямолинейного распространения (законов геометрической оптики), и эти отклонения сопровождаются их интерференционными явлениями.


Свойства дифракции:

1) Дифракция волн - характерная особенность распространения волн независимо от их природы.

2) Волны могут попадать в область геометрической тени (огибать препятствия, проникать через не-большие отверстия в экранах…). На-пр., звук хорошо слышен за углом дома - звуковая волна его огибает. Дифракцией радиоволн вокруг поверхности Земли объясняется прием радиосигналов в диапазоне длинных и средних радиоволн за пределами прямой видимости излучающей антенны.

3) Дифракция волн зависит от соотношения между длиной волны и размером объекта, вызывающего дифракцию. В пределе при законы волновой оптики переходят в законы геометрической оптики отклонения от законов геометрической оптики при прочих равных условиях оказывается тем меньше, чем меньше длина волны. Поэтому легко наблюдать дифракцию звуковых, сейсмических и радиоволн, для которых ~ от м до км; гораздо труднее наблюдать без специальных устройств дифракцию света. Дифракция обнаруживается в тех случаях, когда размеры огибаемых препятствий соизмеримы с длиной волны .

Дифракция света была открыта в 17 в. итальянским физиком и астрономом Ф. Гримальди и была объяснена в начале 19 в. французским физиком О. Френелем , что стало одним из основных доказательств волновой природы света.

Явление дифракции можно объяснить с по-мощью принципа Гюйгенса-Френеля .

Принцип Гюйгенса: каждая точка, до кото-рой доходит волна в данный момент времени, служит центром вто-ричных (элементарных) волн. Огибающая этих волн дает положение волнового фронта в следующий момент времени.

Допущения:

1) волна является плоской;

2) на отверстие свет пада-ет нормально;

3) экран непрозрачный; ма-териал экрана считается в первом приближении не играющим роли;

4) волны распространяется в однородной изотропной среде;

5) обратные элементарные волны не должны приниматься во внимание.

Согласно Гюйгенсу, каждая точка выделяемого отверстием участка во-лнового фронта служит источником вто-ричных волн (в однородной изотропной среде они сферические). Построив огиба-ющую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия - наблюдается дифракция - свет является волновым процессом.

Выводы: принцип Гюйгенса

1) является геометрическим методом построения фронта волны;

2) решает за-дачу о направлении распространения во-лнового фронта;

3) дает объяснение распространения волн, согласующееся с законами геометрической оптики;

4) упрощает задачу определения влияния всего волнового процесса, совершающегося в некотором пространстве, на точку, сведя ее к вычислению действия на данную точку произвольно выбранной волновой поверхности.

5) но: справедлив при условии, что дли-на волны много меньше размеров волнового фронта;

6) не затрагивает вопро-са об амплитуде и интенсивности волн, распространяющихся по разным направлениям.

Принцип Гюйгенса дополнен Френелем

Принцип Гюйгенса-Френеля : волновое возмущение в некоторой точке Р можно рассматривать как результат интерференции ко-герентных вторичных вол, излучаемых каждым элементом некоторой волновой поверхности.

Замечание:

1) Результат интерференция вторичных элементарных волн зависит от направления.

2) Вторичные источники явл. фиктивными. Ими могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник. Обычно в ка-честве поверхности выбирают одну из волновых поверхностей, все фик-тивные источники действуют синфазно.

Допущения Френеля:

1) исключил возможность возникновения обратных вторичных волн;

2) предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии — такая же, как при отсутствии экрана.

Вывод: принцип Гюйгенса-Френеля служит приемом для расчетов направления распространения волн и распределения их интенсивности (амплитуды) по различным направлениям.

1) Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства. Амплитуда волны, прошедшей экран, определяется расчетом в точке наблюдения интерференции вторичных волн от вторичных источников, располагающихся в отверстии экрана.

2) Математически строгое решение дифракционных задач на основе волнового уравнения с граничными условиями, зависящими от характера препятствий, пред-ставляет исключительные трудности. Применяются приближенные методы решения, напр. метод зон Френеля.

3) Принцип Гюйгенса-Френеля в рамках волновой теории объяснил прямолинейное распространение света.

Каждую точку на пути распространения волны можно считать источником вторичных волн.

Представьте себе волну на поверхности водоема. Проще всего, казалось бы, описать волновое движение воды чисто механически - рассчитать силы гидродинамического давления, действующие на частицы водной поверхности снизу, и противодействующие им силы гравитационного притяжения, суммарное воздействие которых и приводит к тому, что поверхность ритмично колышется вверх-вниз. Однако в конце XVII века голландский физик Христиан Гюйгенс представил себе волновую картину несколько по-иному и вывел, благодаря этому, мощный принцип, в равной мере применимый к любым волнам - начиная от волн на водной поверхности и заканчивая гамма-излучением далеких галактик.

Смысл принципа Гюйгенса проще всего понять, если представить себе, что гребень волны на водной поверхности на мгновение застыл. Теперь представьте, что в этот миг вдоль всего фронта волны в каждую точку гребня брошено по камню, в результате чего каждая точка гребня становится источником новой круговой волны. Практически всюду вновь возбужденные волны взаимно погасятся и не проявятся на водной поверхности. И лишь вдоль фронта исходной волны вторичные маленькие волны взаимно усилятся и образуют новый волновой фронт, параллельный предыдущему и отстоящий от него на некоторое расстояние. Именно по такой схеме, согласно принципу Гюйгенса, и распространяется волна.

Так почему столь парадоксальный, казалось бы, взгляд на столь обычное природное явление, как распространение волн, оказывается полезен ученым? Представьте, что будет при столкновении волны с препятствием на пути ее распространения. Вернемся к примеру волны на водной поверхности и представим, что волна ударилась о бетонный волнорез под углом к нему. Согласно принципу Гюйгенса, из тех точек волнового фронта, которые пришлись на волнорез, вторичные волны распространяться не будут, а из остальных будут. В результате волна продолжит свой путь и восстановится позади волнореза. То есть, фактически, при столкновении с препятствием волна спокойно огибает его, и любой моряк вам это подтвердит. (Это свойство волн называется дифракцией.)


Имеется и целый ряд других полезных применений принципа Гюйгенса при рассмотрении волновых явлений - порой весьма неожиданных. Он широко используется в волновой оптике и в телекоммуникационной инженерии, где волны (световые и радио- соответственно) регулярно сталкиваются с препятствиями на пути их распространения и огибают их.

К этому открытию Гюйгенса привели занятия астрономией, для развития которой он сделал немало, в частности, став в 1655 году первооткрывателем Титана - самого большого спутника Сатурна. Автоматическая космическая станция НАСА «Кассини» в 2004 году должна достигнуть Сатурна и отправить на поверхность Титана спускаемый аппарат для исследования состава его атмосферы и грунта. Этот спускаемый аппарат называется «Гюйгенс». Так наука чтит своих основателей.

Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса - Френеля и дифракционные явления.

Принцип Гюйгенса-Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.


Густав Кирхгоф придал принципу Гюйгенса строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа.

Фронтом волны точечного источника в однородном изотропном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова.

Дальнейшим обобщением и развитием принципа Гюйгенса является формулировка через интегралы по траекториям, служащая основой современной квантовой механики.

Использованы материалы: Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».

Комментарии: 0

    Волны - один из двух путей переноса энергии в пространстве (другой путь - корпускулярный, при помощи частиц). Волны обычно распространяются в какой-то среде (например, волны на поверхности озера распространяются в воде), однако направление движения самой среды не совпадает с направлением движения волн. Представьте себе поплавок, покачивающийся на волнах. Поднимаясь и опускаясь, поплавок повторяет движения воды, в то время как волны проходят мимо него. Явление интерференции происходит при взаимодействии двух и более волн одинаковой частоты, распространяющихся в различных направлениях.

    Основы явления дифракции можно понять, если обратиться к принципу Гюйгенса, согласно которому каждая точка на пути распространения светового луча может рассматриваться как новый независимый источник вторичных волн, и дальнейшая дифракционная картина оказывается обусловленной интерференцией этих вторичных волн. При взаимодействии световой волны с препятствием часть вторичных волн Гюйгенса блокируется.

    Что заставляет взаимодействовать все в нашей Вселенной? Ускоряются ли тела или замедляются, меняют свое направление или мчатся вперед – почему они ведут себя именно так? Какие законы являются общими и для малейших частиц и для Галактик? С чего все началось, как развивается и как работает? Эти и другие вопросы волновали человека с самых древних времен… Где же ключ к пониманию тайн механической Вселенной? США, 1985 год.

    Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм - такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

    Имеется целый ряд типов электромагнитного излучения, начиная с радиоволн и заканчивая гамма-лучами. Электромагнитные лучи всех типов распространяются в вакууме со скоростью света и отличаются друг от друга только длинами волн.

Принципы Гюйгенса-Френеля стали основой корпускулярно-волновой теории света. В начале XIX века Христиан Гюйгенс, делая опыты над световыми волнами, предположил, что существуют частицы, являющиеся переносчиками «световой энергии». Этот процесс представлялся ему как последовательная передача энергии от одной корпускулы к следующей путем соударения. Ученые, которые поддерживали эту теорию, утверждали, что свет движется эфире, среде с особыми физическими свойствами, позволяющими частицам не терять энергию при движении. Этот эфир пронизывает все окружающее пространство, а также проходит сквозь предметы, позволяя световым волнам распространяться во все стороны.

Основы теории

То, на чем базировались принципы Гюйгенса-Френеля, можно сформулировать следующим образом: распространение света заключается в том, что световое возбуждение, исходящее от источника света, передается соседним точкам в пространстве, которые генерируют вторичные световые волны и передают их соседним точкам. Поля распространения вторичных волн от соседних точек накладываются друг на друга усиливаясь или затухая. Подтверждением это теории служат дифракция, интерференция, дисперсия и отражение, которые будут подробнее рассмотрены ниже.

Интерференция

Когда две световые волны накладываются друг на друга, они могут либо выступить в роли усиливающего фактора, либо ослабить колебания друг друга. Открытие этого явления произошло за семнадцать лет до формулирования принципа Гюйгенса, в 1801 году Томасом Юнгом, англичанином, врачом по образованию. Ученый заметил, что если на картоне проколоть два очень маленьких отверстия рядом друг с другом и поставить этот экран на пути узконаправленного пучка световых волн, например щели в занавеске, то на стене позади экрана вместо ожидаемых двух светлых пятен будет несколько светлых и темных колец. Для того чтобы опыт был успешным, необходимо всего одно условие - световые волны должны быть согласованы в своих колебаниях.

Дифракция

Световая волна, проходя через аэрозоли, жидкости или твердые тела, может отклоняться от прямолинейной оси движения. Это явление называется дифракцией. Его используют в оптических приборах для получения четкого изображения даже наименьших предметов, или объектов, находящихся на значительном расстоянии.

Одновременно с Гюйгенсом, в 1818 году, Френель сделал презентацию доклада о дифракции Парижскому научному обществу. Его опыт и теоретические выкладки были одобрены, а один из членов комиссии, физик Пуассон, на основе этой теории сделал заключение, что если поставить на пути дифракционно отклоненных лучей непрозрачное круглое препятствие, то на экране будет отражаться светлое пятно, а не тень предмета. Позднее это предположение было проверено опытным путем физиком Д.Ф. Араго. Дифракция света (принцип Гюйгенса-Френеля) нашла свое подтверждение через, казалось бы, противоречащую гипотезу. Волновая теория света заняла свое место среди других верифицированных постулатов физики.

Дисперсия

Помимо дифракции и интерференции принципы Гюйгенса-Френеля включают в себя и явление дисперсии. По сути, это разложение пучка света на отдельные волны после прохождения через аэрозоль, жидкость или твердое тело. Это явление было открыто еще Исааком Ньютоном во время опытов с призмой. Расщепление света можно объяснить тем, что белый луч состоит из световых волн различной длины. Проходя через препятствие, свет отражается под разным углом, так как коэффициент отражения находится в прямой зависимости от длины волны. Из-за этого волны одной длины формируют отдельные пучки, которые мы воспринимаем в разном цветовом спектре: от красного до фиолетового.

Поляризация

Объяснить этот физический принцип довольно сложно. Для больше наглядности можно использовать опыт прохождения света между двумя призмами. Суть его состоит в том, что если твердые прозрачные тела ориентированы одинаково, то свет проходит через них, не теряя своей яркости, если же поставить их перпендикулярно друг другу, то луч не будет проходить. Это объясняется тем, какой вектор направленности имеют световые волны. Если он совпадает с плоскостью, на которой расположен кристалл, то ослабления не происходит, а если не совпадает, то луч света становится менее ярким или вообще не проходит через предмет, ввиду того, что часть волн гасится.

Отражение

Если на пути световой волны возникает твердое или жидкое тело, то она полностью или частично отражается он него. Таким образом, мы можем видеть окружающие нас предметы. Когда световая волна достигает границы раздела сред (например, газ/жидкость или газ/твердое тело), то она полностью или частично отражается обратно. Угол, который образует между лучом света и перпендикуляром, опушенным на поверхность (границу фаз), называется углом падения, а тот, который находится между перпендикуляром и отраженным лучом - углом отражения.

Законы отражения:

  1. Падающий и отраженный лучи и перпендикуляр существуют в одной плоскости.
  2. Угол падения равен углу отражения.
  3. Ход световых лучей обратим.

Диффузное и зеркальное отражение

В зависимости от типа поверхности, от которой отражается луч, можно выделить зеркальное и диффузное отражение. Зеркальным называется отражение, которое наблюдается от очень гладкой поверхности, когда неровности не превышают длину волны. Тогда отраженный луч будет параллелен падающему. Это встречается в зеркалах, стеклах, полированном металле. Если неровности поверхности больше длины световой волны, то отраженные лучи направлены под разными углами относительно угла падения. Именно из-за этого мы можем видеть предметы, которые сами не являются источниками света. Впервые прийти к такому умозаключению помог принцип Гюйгенса. Закон отражения света получил математическое и практическое обоснование, опираясь на уже известные понятия интерференции и дифракции.

Практическое применение

Принципы Гюйгенса-Френеля легли в основу проектирования оптических приборов, а также стали базисом корпускулярно-волновой теории света. Англичанин Д. Табор, лауреат Нобелевской премии по физике, используя этот закон, изобрел голографию. Хотя практическое ее воплощение стало возможно только с внедрением в массовое пользование узконаправленных интенсивных источников света - лазеров. По сути, голограмма - это запечатленная на фотопластинке картина интерференции, образующаяся световыми волнами, которые усиливают и ослабляют друг друга, отражаясь от предмета под разными углами.

Методика такого запечатления трехмерного изображения находит применение в сфере хранения информации, потому что на небольшой поверхности голограммы помещается большее количество данных, чем на микрофотографиях. В качестве наглядного примера можно привести расположение энциклопедического словаря объемом в тысячу триста страниц на фотопластинке 3х3 см.

В разработке находятся такие приборы, как голографический электронный микроскоп, позволяющий создавать трехмерные изображения наименьших структурных единиц живой материи, а также голографическое кино и телевидение, первыми версиями которого являются 3D-киносеансы.

Дифракция света – в узком, но наиболее употребительном смысле – огибание лучами света границы непрозрачных тел (экранов); проникновение света в область геометрической тени. Наиболее рельефно дифракция света проявляется в областях резкого изменения плотности потока лучей: вблизи каустик, фокуса линзы, границ геометрической тени и др. дифракция волн тесно переплетается с явлениями распространения и рассеяния волн в неоднородных средах.

Дифракцией называется совокупность явлений , наблюдаемых при распространении света в среде с резкими неоднородностями, размеры которых сравнимы с длиной волны, и связанных с отклонениями от законов геометрической оптики .

Огибание препятствий звуковыми волнами (дифракция звуковых волн) наблюдается нами постоянно (мы слышим звук за углом дома). Для наблюдения дифракции световых лучей нужны особые условия, это связано с малой длиной световых волн.

Между интерференцией и дифракцией нет существенных физических различий. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн.

Явление дифракции объясняется с помощью принципа Гюйгенса , согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн , а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 9.1). Каждая точка участка волнового фронта, выделенного отверстием, служит источником вторичных волн (в однородной изотопной среде они сферические).

Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. волна огибает края отверстия.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде и интенсивности волн, распространяющихся по разным направлениям.

Решающую роль в утверждении волновой природы света сыграл О. Френель в начале XIX века. Он объяснил явление дифракции и дал метод ее количественного расчета. В 1818 году он получил премию Парижской академии за объяснение явления дифракции и метод его количественного расчета.

Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

При рассмотрении дифракции Френель исходил из нескольких основных положений, принимаемых без доказательства. Совокупность этих утверждений и называется принципом Гюйгенса–Френеля.

Согласно принципу Гюйгенса , каждую точку фронта волны можно рассматривать как источник вторичных волн.

Френель существенно развил этот принцип.

· Все вторичные источники фронта волны, исходящей из одного источника, когерентны между собой.

· Равные по площади участки волновой поверхности излучают равные интенсивности (мощности).

· Каждый вторичный источник излучает свет преимущественно в направлении внешней нормали к волновой поверхности в этой точке. Амплитуда вторичных волн в направлении, составляющем угол α с нормалью, тем меньше, чем больше угол α, и равна нулю при .

· Для вторичных источников справедлив принцип суперпозиции: излучение одних участков волновой поверхности не влияет на излучение других (если часть волновой поверхности прикрыть непрозрачным экраном, вторичные волны будут излучаться открытыми участками так, как если бы экрана не было).

Используя эти положения, Френель уже мог сделать количественные расчеты дифракционной картины.

tattooe.ru - Журнал современной молодежи