Презентация на тему развитие техники. Презентация - история развития вычислительной техники. Текст этой презентации



Основные даты Около 3000 лет до нашей эры - счёты в Китае. 1642г. - Первая механическая суммирующая машина Паскаля. 1694г. - Первая машина Лейбница. 1830г. – Ч. Бэббиджем разработан первый программируемый компьютер. 1867г. - Изобретена пишущая машина. 1890г. – Счётно-аналитическая машина Холлерита. 1930г. - Первый аналоговый компьютер Буша. 1944г. - Первый цифровой компьютер Айкена (МАРК 1). 1946г. - Первый полностью электронный цифровой компьютер Моушли и Эккерта (ЭНИАК). 1948г. - Изобретён транзистор. 1949г. - Завершена работа над первым компьютером с хранимой программой.


Основные даты 1951г. - Первая серийная ЭВМ (ЮНИВАК). 1964г. - Появление интегральных схем. 1965г. - Первый мини-компьютер е г. - Создание больших интегральных схем. 1977г. - Первый микрокомпьютер Возняка и Джобса, выпущенный фирмой APPLE 1980г. - Создан центральный процессор на одном кремниевом кристалле е г. - Появились сверхбольшие интегральные схемы.


30 тыс. лет до н.э. Обнаружена в раскопках так называемая "вестоницкая кость" с зарубками. Позволяет историкам предположить, что уже тогда наши предки были знакомы с зачатками счета.


VI-V век до н.э. Историю цифровых устройств начать следует со счетов. Подобный инструмент был известен у всех народов. Древнегреческий абак (доска или "саламинская доска" по имени острова Саламин в Эгейском море) представлял собой посыпанную морским песком дощечку. На песке проходились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующем разряде. Римляне усовершенствовали абак, перейдя от деревянных досок, песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками.


Китайские счеты суан-пан состояли из деревянной рамки, разделенной на верхние и нижние секции. Палочки соотносятся с колонками, а бусинки с числами. У китайцев в основе счета лежала не десятка, а пятерка. Она разделена на две части: в нижней части на каждом ряду располагаются по 5 косточек, в верхней части - по две. Таким образом, для того чтобы выставить на этих счетах число 6, ставили сначала косточку, соответствующую пятерке, и затем прибавляли одну в разряд единиц. У японцев это же устройство для счета носило название серобян.


На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с XV века получил распространение "дощаный счет", завезенный, видимо, западными купцами вместе с текстилем. "Дощаный счет" почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.




IX век н.э. Индийские ученые сделали одно из важнейших в математике открытий. Они изобрели позиционную систему счисления, которой теперь пользуется весь мир. При записи числа, в котором отсутствует какой-либо разряд (например, 101 или 1204), индийцы вместо названия цифры говорили слово "пусто". При записи на месте "пустого" разряда ставили точку, а позднее рисовали кружок. Арабские математики перевели слово "пусто" по смыслу на свой язык - они говорили "сифр" (цифра). Современное слово "нуль" родилось сравнительно недавно - позднее, чем "цифра". Оно происходит от латинского слова "nihil" - "никакая".


Приблизительно в 850 году н.э. арабский ученый математик Мухаммед бен Муса аль-Хорезми (из города Хорезма на реке Аму- Дарья) написал книгу об общих правилах решения арифметических задач при помощи уравнений. Мухаммеду бен Муса аль- Хорезми мы обязаны появлению термина "алгоритм".


40-е годы XVII в. Блез Паскаль (), крупнейший ученый в истории человечества – математик, физик, философ и богослов, создал в 1642г. первое механическое устройство – суммирующую машину, которая позволяла складывать и вычитать числа в десятичной системе счисления. Она представляла собой систему взаимодействующих колёсиков, каждое из которых соответствовало одному разряду десятичного числа и содержало цифры от 0 до 9. Когда колёсико совершало полный оборот, следующее сдвигалось на одну цифру (это похоже на принцип ручных счетов). Машина Паскаля умела только складывать и вычитать.


Конец XVII в. Механическое устройство (1694г.), позволяющее не только складывать числа, но и умножать их, было изобретено другим великим математиком и философом – Готфридом Вильгельмом Лейбницем. Cчётная машина обладала большими возможностями - выполняла все арифметические операции. Однако она была слишком громоздкой, а работала медленно.


Конец XV – начало XVI века Леонардо да Винчи () создал 13-разрядное суммирующее устройство с десятизубными кольцами. В 1969 году по чертежам Леонардо да Винчи американская фирма IBM по производству компьютеров в целях рекламы построила работоспособную машину.


Основу машины по описанию составляют стержни, на которые крепится два зубчатых колеса, большее с одной стороны стержня, а меньшее - с другой. Эти стержни должны были располагаться таким образом, чтобы меньшее колесо на одном стержне входило в зацепление с большим колесом на другом стержне. При этом меньшее колесо второго стержня сцеплялось с большим колесом третьего, и т.д. Десять оборотов первого колеса, по замыслу автора, должны были приводить к одному полному обороту второго, а десять оборотов второго - один оборот третьего и т.д. Вся система, состоящая из 13 стержней с зубчатыми колесами должна была приводиться в движение набором грузов.


Среди двухтомного собрания рукописей, известных как "Codex Madrid", посвященных механике, были обнаружены чертежи и описание такого устройства. Похожие рисунки также были найдены и в рукописях "Codex Atlanticus".





Машина Бэббиджа была чисто механической и требовала изготовления большого количества высокоточных деталей. Проект остался незавершённым, из-за недостатка финансовых средств. Уже после смерти Бэббиджа некоторые его идеи были использованы при создании первых электромеханических счётных машин. До середины XX в. на таких машинах делали сложные бухгалтерские расчёты и обрабатывали статистические данные. Английский математик и изобретатель Чарльз Бэббидж более 40 лет работал над проектом программируемой вычислительной машины, которую назвал аналитической. Бэббиджу принадлежала сама идея программирования вычислений, а также способ её реализации: ввод программ в машину с помощью перфокарт. Он впервые ввел память для промежуточных вычислений, он же предложил использовать в машине двоичную систему счисления.


Ноябрь 1991г. В ноябре 1991 года разностная машина Чарльза Бэббиджа впервые произвела вычисления: она была собрана сотрудниками Музея науки в Лондоне. Машина состоит из 4000 деталей (не считая механизма печати результата), выполнена из бронзы и стали, а весь составил около 3-х тонн. Ее габариты 2,1 х 3,4 х 0,5 м. Разностная машина, в которой предусмотрено использование десятичной системы счисления, а не двоичной, как в современных компьютерах, может вычислять разности 7-го порядка и работает при помощи рукоятки, являясь действующим экспонатом лондонского Музея науки.




Ада Августа Байрон, графиня Лавлейс Ада Августа Байрон родилась 10 декабря 1815 года (). Ее отец, прославленный английский поэт Джордж Гордон Байрон, посвятил дочери несколько трогательных строк в «Паломничестве Чайльд Гарольда». Ее мать, Аннабелль Минбэнк, за увлеченность точными науками называли «принцессой параллелограммов».






Первая универсальная ЭВМ 1946 г., США – ENIAC (Electronic Numerical Integrator and Computer) содержала электронных ламп и выполняла 5000 операций сложения в секунду. (Количество выполняемых операций в секунду - быстродействие).


Революция в мире компьютеров В январе 1944 года один из создателей ENIACа Джон Эккерт выдвинул идею хранимой программы. Суть этой революционной для компьютерной техники идеи в том, что «программы ЭВМ должны храниться в её внутренней памяти наравне с исходными данными и промежуточными результатами вычислений».




Личность в истории Американский математик и физик Джон фон Нейман () был родом из Будапешта. Своими необычными способностями этот человек стал выделяться очень рано: в шесть лет он разговаривал на древнегреческом языке, а в восемь освоил основы высшей математики. Работал он в Германии, но в начале 1930-х годов принял решение обосноваться в США. Продолжение на следующем слайде…


Личность в истории В 1945 году был опубликован доклад фон Неймана, в котором он наметил основные принципы построения и компоненты современного компьютера. Именно благодаря этому докладу, примерно через год, появилась статья, где автор, отвлекшись от электронных ламп и электрических схем, сумел обрисовать, так сказать, формальную организацию компьютера. Архитектурные принципы организации ЭВМ, заданные фон Нейманом, оставались неизменными вплоть до конца 1970-х годов.


Стоит иметь в виду, что все разработки отечественной вычислительной техники велись в период холодной войны и были закрыты грифом «секретно». Так что классическая архитектура компьютера, называемая сейчас архитектурой фон Неймана, была разработана С.А. Лебедевым, а также И.С. Бруком и Н.Я.Матюхиным совершенно самостоятельно, в том числе и друг от друга.


Первая отечественная ЭВМ 1951 г., СССР – МЭСМ (Малая Электронная Счетная Машина) содержала 6000 электронных ламп и выполняла 5000 операций сложения в секунду. Эта машина была разработана в Киеве группой ученых под руководством академика С.А.Лебедева. С.А.Лебедева. Одна из первых в мире и первая в Европе ЭВМ с хранимой в памяти программой.


БЭСМ В 1952 г. (по некоторым данным в 1953г.) в Москве – БЭСМ (Быстродействующая Электронная Счетная Машина) – самая быстродействующая ЭВМ в Европе. "БЭСМ" - семейство цифровых вычислительных машин общего назначения, ориентированных на решение сложных задач науки и техники. Разработана в Институте точной механики и вычислительной техники АН СССР.


Личность в истории Сергей Александрович Лебедев () родился 2 ноября 1902г. в Нижнем Новгороде. Выдающийся конструктор, академик, создатель первой отечественной электронной цифровой вычислительной машины, а также целого ряда других ЭВМ. С 1950г. – директор Института точной механики и вычислительной техники.


Первый мини-компьютер В 1965 году был выпущен массовый мини-компьютер PDP-8. До конца 60-х были разработаны модели PDP-10 и первого 16-разрядного мини-компьютера PDP-11/20. IBM начинает выпуск первого компьютера из семейства System 370. В 1970-м Intel выпустила первую доступную на рынке микросхему динамической памяти. Особенно важные результаты принёс 1969-й: в этом году сотрудник Intel Тед Хофф изобрёл микропроцессор. В 1970 году другой сотрудник Intel Фредерико Фагин начал работы по проектированию микропроцессора. А через год появился первый в мире четырёхразрядный микропроцессор Intel 4004, содержащий 2300 транзисторов на кристалле, его тактовая частота составляла 108 кГц. Ещё через год Intel разработала восьмиразрядный процессор 8008 для корпорации Computer Terminal Corp (тактовая частота 108 кГц, 3500 транзисторов, адресное пространство 16 Кбайт).


Первый микропроцессор 15 ноября 1971 года Маршиан Эдвард Хофф, работающий в фирме Intel, построил интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ: появился первый микропроцессор, позже получивший название Intel 4004.Intel 4004.


Первый микропроцессор Intel 4004 для своего времени обладал фантастическими характеристиками: 2300 транзисторов в кристалле, 4-битная архитектура, 60 тыс. операций в секунду. Тактовая частота процессора – 108 КГц. Правда, сам термин «микропроцессор» стал применяться только с 1972 года.




Шаг в развитии… Начало 1980-х годов, Адам Осборн (г.г., Англия) – первый «успешный в коммерческом отношении» портативный компьютер.


Персональный компьютер IBM В 1981 году фирма IBM выставила на международный рынок персональный компьютер, который завоевал весь мир. В нём был воплощён принцип "открытой" архитектуры, который означает, что по мере улучшения характеристик отдельных устройств ЭВМ возможно лёгкая замена устаревших устройств на более совершенные. Оперативная память – 640 Кбайт Тип компьютера – IBM PC/XT Процессор – Intel 8086 Тактовая частота – 10 МГц



Личность в истории Джил Амдал (г.) – главный конструктор легендарных машин, таких как IBM 704, 709, 7090, и архитектор компьютерного семейства третьего поколения IBM 360.


Шаг к развитию третьего поколения ЭВМ В начале 1960-х годов наметилось общее направление развития элементной базы компьютеров, а именно – тенденция уменьшения размеров, массы, потребляемой мощности, повышения надёжности, что послужило стимулом к разработке и внедрению в производство компьютерных систем методов так называемой «интегральной технологии», позволивших перейти от отдельных диодов и транзисторов к интегральным схемам и от второго поколения ЭВМ к третьему.


Первые представители компьютеров III поколения Первыми представителями компьютеров третьего поколения обычно считают модели семейства IBM 360 (System 360), о появлении которого было объявлено руководством корпорации IBM в 1964 году. Машины данного семейства могли применяться во многих областях, они являлись универсальными компьютерами. Кроме того, различные модели были в значительной степени совместимыми, и здесь следовало уже говорить о мобильности программного обеспечения: программа, написанная для одной модели семейства IBM 360, должна была почти без изменений подходить для любой другой её модели. Продолжение на следующем слайде…


Первые представители компьютеров III поколения Менялось, конечно, время выполнения программы, могли возникнуть сложности из-за недостатка места в памяти, однако появилась надежда, что при переходе на новую машину уже имеющуюся программу не придётся полностью переделывать. В целом семейство IBM 360 достаточно сильно повлияло на весь ход развития компьютерной техники.






Личность в истории Питер Нортон (родился 14 ноября 1943г.) –журналист, компьютерный эксперт, автор целого ряда книг о ПК. Создатель набора сервисных программ Norton Utilities и оболочки Norton Commander (вышла на рынок в 1986г.). В 1982 году Питер Нортон случайно стер нужный файл с жесткого диска своего ПК. Восстановление файла оказалось сложным и кропотливым делом. Однако сложившаяся ситуация привела к тому, что Нортон создал программу, являющуюся прообразом сегодняшних утилит.


Mulaslator FORmula TRANslator В ноябре 1954 года компания IBM выпустила первый отчет, связанный с созданием языка Фортран (FORmula TRANslator – транслятор и переводчик формул). Руководителем группы разработчиков был Джон Бэкус. В те годы информатика развивалась достаточно стихийно, и трудно было что-то планировать, так что создатели Фортрана не подозревали, какое широкое признание получит созданный ими язык.


Личность в истории Билл ГЕЙТС (родился в 1955г.), американский предприниматель и изобретатель в области электронно-вычислительной техники, председатель и CEO ведущей компании в мире в области программного обеспечения Microsoft. В 1975 году, бросив Гарвардский университет, где он готовился стать правоведом, как его отец, Гейтс совместно со своим школьным товарищем Полом Алленом основал компанию Microsoft. Первой задачей новой фирмы стала адаптация языка Бейсик для использования в одном из первых коммерческих микрокомпьютеров «Альтаире» Эдварда Робертса. В 1980 году Microsoft разработала операционную систему MS-DOS (Microsoft Disk Operation System) для первого IBM PC, ставшую к середине 1980-х годов основной операционной системой на американском рынке микрокомпьютеров. Затем Гейтс приступил к разработке прикладных программ электронных таблиц Excel и текстового редактора Word, и к концу 1980-х Microsoft стала лидером и в этой области.


Личность в истории В 1986 году, выпустив акции компании в свободную продажу, Гейтс в возрасте 31 года стал миллиардером. В 1990 году компания представила оболочку Windows 3.0, в которой вербальные команды были заменены на пиктограммы, выбираемые с помощью «мыши», что значительно облегчило пользование компьютером. В начале 1990-х годов «Окна» продавались в количестве 1 миллиона копий в месяц. К концу 1990-х годов около 90% всех персональных компьютеров в мире были оснащены программным обеспечением Microsoft. О работоспособности Билла Гейтса, а также его уникальном качестве эффективно включиться в работу на любом ее этапе ходят легенды. Безусловно, Гейтс принадлежит к когорте самых незаурядных бизнесменов новой генерации. В 1995 году он выпустил книгу «Дорога в будущее», которая стала бестселлером. В 1997 возглавил список самых богатых людей в мире.



Люди учились считать, используя собственные пальцы. Когда этого оказалось недостаточно, возникли простейшие счетные приспособления. Особое место среди них занял АБАК, получивший в древнем мире широкое распространение. Люди учились считать, используя собственные пальцы. Когда этого оказалось недостаточно, возникли простейшие счетные приспособления. Особое место среди них занял АБАК, получивший в древнем мире широкое распространение. Сделать абак совсем несложно, достаточно разлиновать столбцами дощечку или просто нарисовать столбцы на песке. Каждому из столбцов присваивалось значение разряда чисел: разряд единиц, десятков, сотен, тысяч. Числа обозначались набором камешков, ракушек, веточек и т.п., раскладываемых по различным столбцам – разрядам. Добавляя или убирая из соответствующих столбцов то или иное количество камешков, можно было производить сложение или вычитание и даже умножение и деление как многократное сложение и вычитание соответственно. Сделать абак совсем несложно, достаточно разлиновать столбцами дощечку или просто нарисовать столбцы на песке. Каждому из столбцов присваивалось значение разряда чисел: разряд единиц, десятков, сотен, тысяч. Числа обозначались набором камешков, ракушек, веточек и т.п., раскладываемых по различным столбцам – разрядам. Добавляя или убирая из соответствующих столбцов то или иное количество камешков, можно было производить сложение или вычитание и даже умножение и деление как многократное сложение и вычитание соответственно.


Очень похожи на абак по принципу действия русские счеты. В них вместо столбцов – горизонтальные направляющие с косточками. На Руси счетами пользовались просто виртуозно. Они были незаменимым инструментом торговцев, приказчиков, чиновников. Из России этот простой и полезный прибор проник и в Европу. Очень похожи на абак по принципу действия русские счеты. В них вместо столбцов – горизонтальные направляющие с косточками. На Руси счетами пользовались просто виртуозно. Они были незаменимым инструментом торговцев, приказчиков, чиновников. Из России этот простой и полезный прибор проник и в Европу.


Первым механическим счетным устройством была счетная машина, построенная в 1642 году выдающимся французским ученым Блезом Паскалем. Первым механическим счетным устройством была счетная машина, построенная в 1642 году выдающимся французским ученым Блезом Паскалем. Механический «компьютер» Паскаля мог складывать и вычитать. «Паскалина» – так называли машину – состояла из набора вертикально установленных колес с нанесенными на них цифрами от 0 до 9. При полном обороте колеса оно сцеплялось с соседним колесом и поворачивало его на одно деление. Число колес определяло число разрядов – так, два колеса позволяли считать до 99, три – уже до 999, а пять колес делали машину «знающей» даже такие большие числа как Считать на «Паскалине» было очень просто. Механический «компьютер» Паскаля мог складывать и вычитать. «Паскалина» – так называли машину – состояла из набора вертикально установленных колес с нанесенными на них цифрами от 0 до 9. При полном обороте колеса оно сцеплялось с соседним колесом и поворачивало его на одно деление. Число колес определяло число разрядов – так, два колеса позволяли считать до 99, три – уже до 999, а пять колес делали машину «знающей» даже такие большие числа как Считать на «Паскалине» было очень просто.


В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Машина Лейбница была сложнее «Паскалины». В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Машина Лейбница была сложнее «Паскалины».


Числовые колеса, теперь уже зубчатые, имели зубцы девяти различных длин, и вычисления производились за счет сцепления колес. Именно несколько видоизмененные колеса Лейбница стали основой массовых счетных приборов – арифмометров, которыми широко пользовались не только в ХIХ веке, но и сравнительно недавно наши дедушки и бабушки. Числовые колеса, теперь уже зубчатые, имели зубцы девяти различных длин, и вычисления производились за счет сцепления колес. Именно несколько видоизмененные колеса Лейбница стали основой массовых счетных приборов – арифмометров, которыми широко пользовались не только в ХIХ веке, но и сравнительно недавно наши дедушки и бабушки. Есть в истории вычислительной техники ученые, чьи имена, связанные с наиболее значительными открытиями в этой области, известны сегодня даже неспециалистам. Среди них английский математик Х1Х века Чарльз Бэббидж, которого часто называют «отцом современной вычислительной техники». В 1823 году Бэббидж начал работать над своей вычислительной машиной, состоявшей из двух частей: вычисляющей и печатающей. Машина предназначалась в помощь британскому морскому ведомству для составления различных мореходных таблиц. Есть в истории вычислительной техники ученые, чьи имена, связанные с наиболее значительными открытиями в этой области, известны сегодня даже неспециалистам. Среди них английский математик Х1Х века Чарльз Бэббидж, которого часто называют «отцом современной вычислительной техники». В 1823 году Бэббидж начал работать над своей вычислительной машиной, состоявшей из двух частей: вычисляющей и печатающей. Машина предназначалась в помощь британскому морскому ведомству для составления различных мореходных таблиц.


Первая, вычисляющая часть машины была почти закончена к 1833 году, а вторую, печатающую, удалось довести почти до половины, когда расходы превысили фунтов стерлингов (около долларов). Больше денег не было, и работы пришлось закрыть. Первая, вычисляющая часть машины была почти закончена к 1833 году, а вторую, печатающую, удалось довести почти до половины, когда расходы превысили фунтов стерлингов (около долларов). Больше денег не было, и работы пришлось закрыть. Хотя машина Бэббиджа и не была закончена, ее создатель выдвинул идеи, которые и легли в основу устройства всех современных компьютеров. Бэббидж пришел к выводу – вычислительная машина должна иметь устройство для хранения чисел, предназначенных для вычислений, а также указаний (команд) машине о том, что с этими числами делать. Следующие одна за другой команды получили название «программы» работы компьютера, а устройство для хранения информации назвали «памятью» машины. Однако хранение чисел даже вместе с программой – только полдела. Главное – машина должна производить с этими числами указанные в программе операции. Бэббидж понял, что для этого в машине должен быть специальный вычислительный блок – процессор. Именно по такому принципу и устроены современные компьютеры. Хотя машина Бэббиджа и не была закончена, ее создатель выдвинул идеи, которые и легли в основу устройства всех современных компьютеров. Бэббидж пришел к выводу – вычислительная машина должна иметь устройство для хранения чисел, предназначенных для вычислений, а также указаний (команд) машине о том, что с этими числами делать. Следующие одна за другой команды получили название «программы» работы компьютера, а устройство для хранения информации назвали «памятью» машины. Однако хранение чисел даже вместе с программой – только полдела. Главное – машина должна производить с этими числами указанные в программе операции. Бэббидж понял, что для этого в машине должен быть специальный вычислительный блок – процессор. Именно по такому принципу и устроены современные компьютеры. Научные идеи Бэббиджа увлекли дочь знаменитого английского поэта лорда Научные идеи Бэббиджа увлекли дочь знаменитого английского поэта лорда Джорджа Байрона – графиню Аду Августу Лавлейс. В то время еще не было таких понятий, как программирование для ЭВМ, но тем не менее Аду Лавлейс по праву считают первым в мире программистом – так сейчас называют людей, способных Джорджа Байрона – графиню Аду Августу Лавлейс. В то время еще не было таких понятий, как программирование для ЭВМ, но тем не менее Аду Лавлейс по праву считают первым в мире программистом – так сейчас называют людей, способных «объяснить» на понятном машине языке ее задачи. Дело в том, что Бэббидж не оставил ни одного полного описания изобретенной им машины. Это сделал один из его учеников в статье на французском языке. Ада Лавлейс перевела ее на английский, добавив собственные программы, по которым машина могла бы проводить сложные математические расчеты. В результате первоначальный объем статьи вырос втрое, а Бэббидж получил возможность продемонстрировать мощь своей машины. Многими понятиями, введенными Адой Лавлейс в описаниях тех первых в мире программ, широко пользуются современные программисты. В честь первого в мире программиста назван один из самых современных и совершенных языков компьютерного программирования – АДА. «объяснить» на понятном машине языке ее задачи. Дело в том, что Бэббидж не оставил ни одного полного описания изобретенной им машины. Это сделал один из его учеников в статье на французском языке. Ада Лавлейс перевела ее на английский, добавив собственные программы, по которым машина могла бы проводить сложные математические расчеты. В результате первоначальный объем статьи вырос втрое, а Бэббидж получил возможность продемонстрировать мощь своей машины. Многими понятиями, введенными Адой Лавлейс в описаниях тех первых в мире программ, широко пользуются современные программисты. В честь первого в мире программиста назван один из самых современных и совершенных языков компьютерного программирования – АДА.


Новинки техники ХХ века оказались неразрывно связанными с электричеством. Вскоре после появления электронных ламп, в 1918 году советский ученый М.А.Бонч-Бруевич изобрел ламповый триггер – электронное устройство, способное запоминать электрические сигналы. Новинки техники ХХ века оказались неразрывно связанными с электричеством. Вскоре после появления электронных ламп, в 1918 году советский ученый М.А.Бонч-Бруевич изобрел ламповый триггер – электронное устройство, способное запоминать электрические сигналы. По принципу действия триггер похож на качели с защелками, установленными в верхних точках качания. Достигнут качели одной верхней точки – сработает защелка, качание остановится, и в этом устойчивом состоянии они могут быть как угодно долго. Откроется защелка – качание возобновится до другой верхней точки, здесь также сработает защелка, снова остановка, и так – сколько угодно раз.


Первые компьютеры считали в тысячи раз быстрее механических счетных машин, но были очень громоздкими. ЭВМ занимала помещение размером 9 х 15 м, весила около 30 тонн и потребляла 150 киловатт в час. В такой ЭВМ было около 18 тысяч электронных ламп. Первые компьютеры считали в тысячи раз быстрее механических счетных машин, но были очень громоздкими. ЭВМ занимала помещение размером 9 х 15 м, весила около 30 тонн и потребляла 150 киловатт в час. В такой ЭВМ было около 18 тысяч электронных ламп.


Второе поколение электронных компьютеров обязано своим появлением важнейшему изобретению электроники ХХ века – транзистору. Миниатюрный полупроводниковый прибор позволил резко уменьшить габариты компьютеров и снизить потребляемую мощность. Скорость компьютеров возросла до миллиона операций в секунду. Второе поколение электронных компьютеров обязано своим появлением важнейшему изобретению электроники ХХ века – транзистору. Миниатюрный полупроводниковый прибор позволил резко уменьшить габариты компьютеров и снизить потребляемую мощность. Скорость компьютеров возросла до миллиона операций в секунду. В сотни раз сократить число электронных элементов в компьютере позволило изобретение в 1950 году интегральных микросхем – полупроводниковых кристаллов, содержащих большое количество соединенных между собой транзисторов и других элементов. ЭВМ третьего поколения на интегральных микросхемах появились в 1964 году. В сотни раз сократить число электронных элементов в компьютере позволило изобретение в 1950 году интегральных микросхем – полупроводниковых кристаллов, содержащих большое количество соединенных между собой транзисторов и других элементов. ЭВМ третьего поколения на интегральных микросхемах появились в 1964 году.


В июне 1971 года была впервые разработана очень сложная универсальная интегральная микросхема, названная микропроцессором – важнейшим элементом компьютеров четвертого поколения. В июне 1971 года была впервые разработана очень сложная универсальная интегральная микросхема, названная микропроцессором – важнейшим элементом компьютеров четвертого поколения.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

История развития компьютерной техники.

До появления ЭВМ.

Считают что первый счетный прибор был изобретен в древнем Китае в конце второго тысячелетия до нашей эры. Он представлял собой обычную счетную доску. Позиционный принцип возник позже, уже в III веке-до нашей эры, в таком виде, с незначительными изменениями, она дошла до нашего времени. Ей и поныне пользуются в Китае называется он - суань-пан. Счет на нем шел снизу вверх, слагаемые располагались на нижней части доски, а суммирование проводилось от старших разрядов к младшим. Числа выкладывали из небольших палочек, по аддитивному принципу. Нуль никак не обозначался, вместо него просто оставляли пустое место.

Русский абак появился на рубеже 16-17 веков. Наиболее распространенным инструментом счета в допетровской Руси был "счет костьми", представлявший собой специальную доску или стол. Перед проведением вычислений их нужно было разграфить горизонтальными линиями. Четыре арифметических действия осуществлялись с помощью камешка, фруктовой косточки или специального жетона.

В 1642 году французский математик Блез Паскаль сконструировал первую в мире механическую счетную машину, которая, умела складывать и вычитать. Легенда гласит, что в 1709 году некий венецианец Полени построил счетную машину, работавшую при помощи зубчаток с переменным числом зубцов. Узнав, что Паскаль изготовил арифметическую машину значительно раньше (хотя ее конструкция была другой), Полени свой аппарат разбил. Первый арифмометр положивший начало счетному машиностроению был изобретен в 1818 году руководителем парижского страхового общества Карлом Томасом.

В 1670 – 1680 годах немецкий математик Готфрид Лейбниц сконструировал счётную машину которая выполняла все четыре арифметических действия.

в 1812 году английский математик Чарльз Беббидж начал работу над « разностной» машиной, которая могла бы выполнять определённую программу. К 1822 году он построил небольшую действующую модель оперирующую 18- разрядными числами и рассчитал на ней таблицу квадратов.

в 1833 году Беббидж приступил к разработке аналитической машины. В её конструкцию входили: Устройство для хранения чисел, Устройство, выполняющее арифметические операции, Управление последовательностью действий машины, Устройство ввода данных и печати полученных результатов.

Программы для этой машины записывались на перфокарты. Первым разработчиком программ стала Ада Лавлейс.

Для автоматизации переписи населения в 1888 году в США Генрих Холлерит создал табулятор, в котором информация расшифровывалась с помощью электрического тока. В 1924 году Холлерит основал фирму IBM .

Первое поколение. 1949 -1958 г.г.

В 1942 году американский физик Джон Моучли (John Mauchly) (1907-1980), после детального ознакомления с проектом Атанасова, представил собственный проект вычислительной машины. В работе над проектом ЭВМ ENIAC (Electronic Numerical Integrator and Computer - электронный числовой интегратор и калькулятор) под руководством Джона Моучли и Джона Эккерта (John Presper Eckert) участвовало 200 человек. Весной 1945 года ЭВМ была построена, а в феврале 1946 года рассекречена. ENIAC, содержащий 178 468 электронных ламп шести различных типов, 7200 кристаллических диодов, 4100 магнитных элементов, занимавшая площадь в 300 кв.метром, в 1000 раз превосходил по быстродействию релейные вычислительные машины. Компьютер проживет девять лет и последний раз будет включен в 1955 г.

Одновременно с постройкой ENIAC , также в обстановке секретности, создавалась ЭВМ в Великобритании. Секретность была необходима потому, что проектировалось устройство для дешифровки кодов, которыми пользовались вооруженные силы Германии в период второй мировой войны. Математический метод дешифровки был разработан группой математиков, в число которых входил Алан Тьюринг (Alan Turing). В течение 1943 году в Лондоне была построена машина Colossus на 1500 электронных лампах. Разработчики машины - М.Ньюмен и Т.Ф.Флауэрс.

В 1937 году гарвардский математик Говард Эйкен (Howard Aiken) предложил проект создания большой счетной машины. Спонсировал работу президент компании IBM Томас Уотсон (Tomas Watson), который вложил в нее 500 тыс.$. Проектирование Mark-1 началось в 1939 году, строило этот компьютер нью-йоркское предприятие IBM. Компьютер содержал около 750 тыс. деталей, 3304 реле и более 800 км проводов

В 1946 году Джон фон Нейман на основе критического анализа конструкции ENIAC предложил ряд новых идей организации ЭВМ, в том числе концепцию хранимой программы, т.е. хранения программы в запоминающем устройстве. В результате реализации идей фон Неймана была создана архитектура ЭВМ, во многих чертах сохранившаяся до настоящего времени

В 1948 году Сергеем Александровичем Лебедевым (1990-1974) и Б.И.Рамеевым был предложен первый проект отечественной цифровой электронно - вычислительной машины. Под руководством академика Лебедева С.А. и Глушкова В.М. разрабатываются отечественные ЭВМ: сначала МЭСМ - малая электронная счетная машина (1951 год, Киев), затем БЭСМ - быстродействующая электронная счетная машина (1952 год, Москва). Параллельно с ними создавались Стрела, Урал, Минск, Раздан, Наири.

В 1951 году была закончена работа по созданию UNIVAC (Universal Automatic Computer). Первый образец машины UNIVAC-1 был построен для бюро переписи США. Синхронная, последовательного действия вычислительная машина UNIVAC-1 создана была на базе ЭВМ ENIAC и EDVAC. Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство емкость 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки. Этот компьютер интересен тем, что он был нацелен на сравнительно массовое производство без изменения архитектуры и особое внимание было уделено периферийной части (средствам ввода-вывода).

Офицер ВМФ США и руководитель группы программистов, в то время капитан (в дальнейшем единственная женщина в ВМФ - адмирал) Грейс Хоппер разработала первую транслирующую программу, которую она назвала компилятором (фирма Remington Rand). Эта программа производила трансляцию на машинный язык всей программы, записанной в удобной для обработки алгебраической форме.

Джей Форрестер запатентовал память на магнитных сердечниках. Впервые такая память применена на машине Whirlwind-1 . Она представляла собой два куба с 32х32х17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля четности. В этой машине была впервые использована универсальная неспециализированная шина и в качестве систем ввода-вывода использовались два устройства: электронно-лучевая трубка Вильямса и пишущая машинка с перфолентой (флексорайтер).

В Великобритании в июне 1951 года на конференции в Манчестерском университете Морис Уилкс представил доклад "наилучший метод конструирования автоматической машины", который стал пионерской работой по основам микропрограммирования Началась опытная эксплуатация отечественного компьютера БЭСМ-1. В СССР в 1952-1953 годах А.А. Ляпунов разработал операторный метод программирования (операторное программирование), а в 1953-1954 годах Л.В.Канторович - концепцию крупноблочного программирования. Фирма IBM выпустила свой первый промышленный компьютер IBM 701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 1200 германиевых диодов.

1951 ПЕРВЫЙ ОТЕЧЕСТВЕННЫЙ КОМПЬЮТЕР «МЭСМ» БЫЛ СОЗДАН ПОД РУКОВОДСТВОМ С.А. ЛЕБЕДЕВА; ИМ ЖЕ В 1952 БЫЛ СОЗДАНН КОМПЬЮТЕР «БЭСМ».

Выпущена первая серийная отечественная вычислительная машина Стрела.

В Массачусетском технологическом институте был разработан первый экспериментальный компьютер на транзисторах ТХ-0 (в 1955 году он введен в эксплуатацию). Появился первый накопитель на магнитной ленте, устройство IBM 726.Плотность записи составляла 100 символов на дюйм, скорость 75 дюймов в секунду.

Второе поколение ЭВМ 1959 – 1963 г.г.

" Традис " - первый транзисторный компьютер фирмы "Белл телефон лабораторис" - содержал 800 транзисторов, каждый из которых был заключен в отдельный корпус 1955 год

В 1959 г. выпущена отечественная вычислительная машина Сетунь, работающая в троичной системе счисления. В 1956 г. модели IBM 350 RAMAC впервые появилась память на дисках (алюминиевые намагниченные диски диаметром 61 см). В 1957 г. Джек Килби из Texas Instruments и Роберт Нойс из Fairchild Semiconductor независимо друг от друга изобретают интегральную схему. Дж.Маккарти и К.Стрейчи предложили концепцию разделения времени работы компьютера.

Сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт (Douglas (Doug) Engelbart) продемонстрировал работу первой мыши. Первая мышь

В 1964 году фирма IBM объявила о создании шести моделей семейства IBM (System 360), ставших первыми компьютерами третьего поколения. Модели имели единую систему команд и отличались друг от друга объемом оперативной памяти и производительностью

Третье поколение 1964 -1976 г.г.

В 1965 г. фирма Digital Equipment Corp. (DEC) выпустила один из первых мини-компьютеров PDP-8. John Kemeny

В 1967 г. под руководством С.А.Лебедева и В.М.Мельникова в ИТМ и ВТ создана быстродействующая вычислительная машина БЭСМ-6 . IBM разработала первую подсистему дисковой памяти IBM RAMAC 305. Она имела ёмкость всего 5 Мбайт на 50 двухфутовых пластинах.

1968 г. В США фирма "Барроуз" выпустила первую быстродействующую ЭВМ на БИСах (больших интегральных схемах)- В2500 и В3500. В декабре 1968 года была организована на конференция Полом Сэффо (Paul Saffo), профессором истории Стэнфордского университета и оракулом компьютерных технологий. На этой конференции была необычная демонстрация. Видеопоток, направляемый по радиоканалу из Пало-Альто, освещал основные моменты работы Дэвида Энгельбарта в Стэнфордском исследовательском институте (SRI - Stanford Research Institute). Были показаны краеугольные камни новой информационной эры: интерактивное программирование, совместное использование баз данных, видеоконференции, навигация в виртуальных пространствах, прототип оконного интерфейса.

1969 г.Фирма IBM разделила понятия аппаратных средств (hardware) и программные средства (software). Фирма начала продавать программное обеспечение отдельно от железа, положив начало индустрии программного обеспечения Под эгидой Агентства по перспективным исследованиям МО США (ARPA) началась разработка и внедрение глобальной военной компьютерной сети, связывающей исследовательские лаборатории на территории США. 29 октября 1969 года принято считать днем рождения Сети.

Четвёртое поколение. 1977 -1985 г.г.

в 1971 году фирмой Intel был создан первый микропроцессор. На одном кристалле удалось сформировать минимальный по составу процессор, содержащий 2250 транзисторов.

В 1977 году фирма Apple Computer (С. Джобс и В. Возняк) наладила выпуск персональных компьютеров. Их основой стал «дружественный» подход к работе человека на компьютере.

С 1982 года фирма IBM приступила к выпуску эталонной для нас модели компьютера.

IBM выпустила документацию по аппаратуре и программные спецификации, что позволило другим фирмам разрабатывать аппаратное и программное обеспечение.

Поколение ЭВМ Первое (1949-1958) Второе (1959-1963) Третье (1964-1976) Четвертое (1977-1985) Пятое (1986-…) Элементная база ЭВМ Электронные лампы, реле Транзисторы Интегральные схемы (ИС), большие интегр. сх. (БИС) Сверхбольшие ИС (СБИС) СБИС Производительность 3 10 5 оп/с до 3 10 6 оп/с До 3 10 7 оп/с более 3 10 7 оп/с более 3 10 8 оп/с Объем ОП до 64 Кб до 512 Кб до 16 Мб более 16 Мб 128Мб и более Типичные модели поколения EDSAC, ENIAC, БЭСМ RCA-501.IBM 7090, БЭСМ-6 IBM/360, PDP. ЕС ЭВМ, СМ ЭВМ IBM/360, SX-2. IBM PC/XT/AT.PS/2 IBM Программное обеспечение Коды, автокоды, а ссемблеры Языки программирования ППП,СУБД. операционные системы Системы параллельного программирования Платформа Windows Носители информации Перфоленты Перфокарты Магнитные ленты Магнитные диски Магнитные и оптические диски

Домашнее задание. Тема 24. Стр. 380 вопросы. Письменно № 7,8.

Проверочная работа.

1. В каком веке появились первые устройства, способные выполнять арифметические действия? в XVI в XVII в XVIII в XIX .

2. Первым программистом мира является: Г. Лейбниц, А. Лавлейс, Б. Паскаль, С. Лебедев.

4. Абак – это: музыкальный автомат, счёты, устройство для работы по заданной программе, первая механическая машина.

5. Первая аналитическая машина была изобретена: Ч. Беббиджем, В. Шиккардом, Ж. Жаккардом, Б. Паскалем.

Ответы: 1 2 3 4 5 b b a b a Оценки: 5 + «5» 4 + «4» 3 + «3»


Тема урока: История развития вычислительной техники Цели урока:

  • Познакомиться с основными этапами развития вычислительной техники.
  • Изучить историю развития отечественной и зарубежной вычислительной техники.
Основные этапы развития вычислительной техники
  • Вычисления в доэлектронную эпоху.
  • 2. ЭВМ первого поколения.
  • 3. ЭВМ второго поколения.
  • 4. ЭВМ третьего поколения.
  • 5. Персональные компьютеры.
  • 6. Современные супер-ЭВМ.
  • Потребность счета предметов у человека возникла еще в доисторические времена. Древнейший метод счета предметов заключался в сопоставлении предметов некоторой группы (например, животных) с пердметами другой группы, играющей роль счетного эталона. У большинства народов первым таким эталоном были пальцы (счет на пальцах).
  • Расширяющиеся потребности в счете заставили людей употреблять другие счетные эталоны (зарубки на палочке, узлы на веревке и т.д.).
Вычисления в доэлектронную эпоху
  • Каждый школьник хорошо знаком со счетными палочками, которые использовались в качестве счетного эталона в первом классе.
  • В древнем мире при счете больших количеств предметов для обозначения определенного их количества (у большинства народов - десяти) стали применять новый знак, например зарубку на другой палочке. Первым вычислительным устройством, в котором стал применяться этот метод, стал абак.
Вычисления в доэлектронную эпоху
  • Древнегреческий абак представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т. д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующий разряд. Римляне усовершенствовали абак, перейдя от песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками.
  • Абак
Вычисления в доэлектронную эпоху
  • По мере усложнения хозяйственной деятельности и социальных отношений (денежных расчетов, задач измерений расстояний, времени, площадей и т. д.) возникла потребность в арифметических вычислениях.
  • Для выполнения простейших арифметических операций (сложения и вычитания) стали использовать абак, а по прошествии веков - счеты.
  • В России счеты появились в XVI веке
Вычисления в доэлектронную эпоху
  • Развитие науки и техники требовало проведения все более сложных математических расчетов, и в XIX веке были изобретены механические счетные машины - арифмометры. Арифмометры могли не только складывать, вычитать, умножать и делить числа, но и запоминать промежуточные результаты, печатать результаты вычислений и т. д.
  • Арифмометр
Вычисления в доэлектронную эпоху
  • В середине XIX века английский математик Чарльз Бэббидж выдвинул идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройства ввода и печати.
  • Чарльз Бэббидж
  • 26.12.1791 - 18.10.1871
Вычисления в доэлектронную эпоху
  • Аналитическую машину Бэббиджа (прообраз современных компьютеров) по сохранившимся описаниям и чертежам построили энтузиасты из Лондонского музея науки. Аналитическая машина состоит из четырех тысяч стальных деталей и весит три тонны.
  • Аналитическая машина Бэббиджа
Вычисления в доэлектронную эпоху
  • Вычисления производились Аналитической машиной в соответствии с инструкциями (программами), которые разработала леди Ада Лавлейс (дочь английского поэта Джорджа Байрона).
  • Графиню Лавлейс считают первым программистом, и в ее честь назван язык программирования АДА.
  • Ада Лавлейс
  • 10.12 1815 - 27.11.1852
Вычисления в доэлектронную эпоху
  • Программы записывались на перфокарты путем пробития в определенном порядке отверстий в плотных бумажных карточках. Затем перфокарты помещались в Аналитическую машину, которая считывала расположение отверстий и выполняла вычислительные операции в соответствии с заданной программой.
ЭВМ первого поколения
  • В 40-е годы XX века начались работы по созданию первых электронно-вычислительных машин, в которых на смену механическим деталям пришли электронные лампы. ЭВМ первого поколения требовали для своего размещения больших залов, так как в них использовались десятки тысяч электронных ламп. Такие ЭВМ создавались в единичных экземплярах, стоили очень дорого и устанавливались в крупнейших научно-исследовательских центрах.
ЭВМ первого поколения
  • В 1945 году в США был построен ENIAC (Electronic Numerical Integrator and Computer - электронный числовой интегратор и калькулятор), а в 1950 году в СССР была создана МЭСМ (Малая Электронная Счетная Машина)
  • ENIAC
  • МЭСМ
ЭВМ первого поколения
  • ЭВМ первого поколения могли выполнять вычисления со скоростью несколько тысяч операций в секунду, последовательность выполнения которых задавалась программами. Программы писались на машинном языке, алфавит которого состоял из двух знаков: 1 и 0. Программы вводились в ЭВМ с помощью перфокарт или перфолент, причем наличие отверстия на перфокарте соответствовало знаку 1, а его отсутствие – знаку 0.
  • Результаты вычислений выводились с помощью печатающих устройств в форме длинных последовательностей нулей и единиц. Писать программы на машинном языке и расшифровывать результаты вычислений могли только квалифицированные программисты, понимавшие язык первых ЭВМ.
ЭВМ второго поколения
  • В 60-е годы XX века были созданы ЭВМ второго поколения, основанные на новой элементной базе - транзисторах, которые имеют в десятки и сотни раз меньшие размеры и массу, более высокую надежность и потребляет значительно меньшую электрическую мощность, чем электронные лампы. Такие ЭВМ производились малыми сериями и устанавливались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.
ЭВМ второго поколения
  • В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Большая Электронная Счетная Машина), которая могла выполнять 1 миллион операций в секунду.
  • В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти на магнитных лентах, а также алфавитно-цифровые печатающие устройства для вывода результатов вычислений.
  • Работа программистов по разработке программ существенно упростилась, так как стала проводиться с использованием языков программирования высокого уровня (Алгол, Бейсик и др.).
  • БЭСМ - 6
ЭВМ третьего поколения
  • Начиная с 70-х годов прошлого века, в качестве элементной базы ЭВМ третьего поколения стали использовать интегральные схемы. В интегральной схеме (маленькой полупроводниковой пластине) могут быть плотно упакованы тысячи транзисторов, каждый из которых имеет размеры, сравнимые с толщиной человеческого волоса.
ЭВМ третьего поколения
  • ЭВМ на базе интегральных схем стали гораздо более компактными, быстродействующими и дешевыми. Такие мини-ЭВМ производились большими сериями и были доступными для большинства научных институтов и высших учебных заведений.
  • Первая мини-ЭВМ
Персональные компьютеры
  • Развитие высоких технологий привело к созданию больших интегральных схем - БИС, включающих десятки тысяч транзисторов. Это позволило приступить к выпуску компактных персональных компьютеров, доступных для массового пользователя.
  • Первым персональным компьютером был Аррle II («дедушка» современных компьютеров Маcintosh), созданный в 1977 году. В 1982 году фирма IBM приступила к изготовлению персональных компьютеров IВМ РС («дедушек» современных IВМ-совместимых компьютеров).
  • Apple II
Персональные компьютеры
  • Современные персональные компьютеры компактны и обладают в тысячи раз большим быстродействием по сравнению с первыми персональными компьютерами (могут выполнять несколько миллиардов операций в секунду). Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя.
  • Персональные компьютеры могут быть различного конструктивного исполнения: настольные, портативные (ноутбуки) и карманные (наладонники).
  • Современные ПК
Современные супер-ЭВМ
  • Это многопроцессорные комплексы, которые позволяют добиться очень высокой производительности и могут применяться для расчетов в реальном времени в метеорологии, военном деле, науке и т. д.

1 из 37

Презентация - История развития вычислительной техники

3,704
просмотра

Текст этой презентации

История развития вычислительной техники

Введение
На современном этапе развития нашего общества невозможно представить себе жизнь и деятельность без использования современной вычислительной и компьютерной техники, высоких компьютерных технологий. Вычислительная техника в двадцатом веке сделала грандиозный рывок в своем развитии от громоздких и, порой, примитивных ламповых гигантов, потребляющих для своей работы такое же гигантское количество энергии до современных компактных ПК и NOTEBOOK. Компьютеры давно уже стали надежными и удобными помощниками на производстве, в торговле и бизнесе, компьютер, прочно обосновались в дизайнерских бюро, телестудиях, студиях звукозаписи, давно перестал быть только вычислительной техникой.

Этапы развития вычислительной техники
Ручной ……… с 50-го тысячелетия до н.э. Механический ……..с середины XVII века Электромеханический ……. с 90-х годов XIX века Электронный …… с 40-х годов XX века

Ручной этап

Счеты
Счеты - первый истинный предшественник счетных машин и компьютеров. Вычисления на них проводились с помощью перемещения счетных костей и камешков (калькулей) в углублениях досок из бронзы, камня, слоновой кости. Первым счетным устройством, известным еще задолго до нашей эры, был абак. Известно несколько разновидностей абака: греческий, египетский и римский абак, китайский суан-пан и японский соробан.

Счеты
Абак
Китайский суан-пан
Русские счеты

Счетное устройство Непера
В начале 17 века шотландский математик Джон Непер изобрел математический набор, состоящий из брусков с нанесенными на них цифрами от 0 до 9 и кратными им числами. Для умножения какого-либо числа два бруска располагали рядом так, чтобы цифры на торцах составляли это число. На боковых сторонах брусков после несложных вычислений можно увидеть ответ.
Джон Непер

Логарифмическая линейка
Логарифмическая линейка была изобретена английским математиком Э. Гантером вскоре после открытия логарифмов и описана им в 1623 году. Логарифмическая линейка - инструмент для несложных вычислений, с помощью которого операции над числами (умножение, деление, возведение в степень, извлечение корня) заменяются операциями над логарифмами этих чисел. Логарифмическая линейка - простой и удобный счетный инструмент для инженерных расчетов. В конце 20 века логарифмические линейки были вытеснены инженерными электронными калькуляторами.

Механический этап

Механические счетные устройства
Проект одной из первых механических суммирующих машин был разработан немецким ученым Вильгельмом Шиккардом. Эта шестиразрядная машина была построена предположительно в 1623 году. Однако это изобретение оставалось неизвестным до середины двадцатого столетия, поэтому никакого влияния на развитие вычислительной техники не оказало.
Вильгельм Шиккард

Суммирующая машина Паскаля
В 1642 году Блез Паскаль сконструировал устройство, механически выполняющее сложение чисел, в 1645 году было налажено серийное производство этих машин. С ее помощью можно было складывать числа, вращая колесики с делениями от 0 до 9, связанные друг с другом. Были отдельные колесики для единиц, десятков, сотен. Машина не могла выполнять никаких других арифметических действий, кроме сложения. Вычитать, умножать или делить на ней можно было лишь путем многократного сложения (вычитания). Изобретенный Паскалем принцип связанных колес стал основой для вычислительных устройств следующих трех столетий.
Блез Паскаль

Калькулятор Лейбница
В 1673 году Лейбниц изготовил механический калькулятор, в частности, чтобы облегчить труд своего друга астронома Христиана Гюйгенса. В машине Лейбница использовался принцип связанных колец суммирующей машины Паскаля, но Лейбниц ввел в нее подвижный элемент, позволивший ускорить повторение операции сложения, необходимое при перемножении чисел. Вместо колесиков и приводов в машине Лейбница находились цилиндры с нанесенными на них цифрами. Каждый цилиндр имел девять рядов выступов или зубцов.
Готфрид Вильгельм фон Лейбниц

Арифмометры
Арифмометр (от греч. - число) - настольная вычислительная машина ручным приводом для выполнения арифметических действий сложения, вычитания, умножения и деления. Арифмометр снабжен механизмом для установки и переноса чисел в счетчик, счетчиком оборотов, счетчиком результата, устройством для гашения результата, ручным или электрическим приводом. Арифмометр эффективен при выполнении операций умножения и деления. В течение многих десятков лет он был самой распространенной вычислительной машиной. С развитием вычислительной техники арифмометры были вытеснены электронными микрокалькуляторами.

Арифмометры
Первый арифмометр
Арифмометр «Феликс» (русская конструкция)
Арифмометр Resulta

Разностная машина Бэббиджа
Разностная машина Бэббиджа - вычислительная машина британского математика Чарльза Бэббиджа, предназначенная для автоматизации вычислений путем аппроксимации функций многочленами и вычисления конечных разностей.

Электромеханический этап

Табулятор Холлерита
В 1888 году Холлерит сконструировал электромеханическую машину, которая могла считывать и сортировать статистические записи, закодированные на перфокартах. Эта машина, названная табулятором, состояла из реле, счетчиков, сортировочного ящика. В 1890 году изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Успех вычислительных машин с перфокартами был феноменален. То, чем за десять лет до этого 500 сотрудников занимались в течение семи лет, Холлерит сделал с 43 помощниками на 43 вычислительных машинах за 4 недели.

Электронный этап

Поколения компьютерной техники
Поколение 1 2 3 4 5
Годы применения
Элементная база
Кол-во в мире
Объем оперативной памяти
Быстродействие (опер. в сек.)
Носители информации

Первое поколение ЭВМ 1946 - 1953 гг.
Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, “Урал-1”, “Урал-2”, “Урал-3”, M-20, "Сетунь", БЭСМ-2, "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2-3 тысяч операций в секунду, емкость оперативной памяти-2 КВ.
Электронные лампа

Первое поколение ЭВМ 1948 - 1953 гг.
МЭСМ-1
БЭСМ-2
Сетунь

Перфокарта


Элементной базой машин этого поколения были полупроводниковые приборы. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.
Полупроводник

БЭСМ-6
Минск
Второе поколение ЭВМ1953 - 1959 гг.

Перфолента


Элементная база ЭВМ - малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

Третье поколение ЭВМ 1959 - 1970 гг.
Единая система ЭВМ (ЕС ЭВМ)
IBM-360

Магнитная лента

Четвертое поколение ЭВМ 1970 - 1974 гг.
Элементная база ЭВМ - большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости.

ЕС ЭВМ
Процессор
Пульт управления
Накопитель
Дисковод

Дискеты
8 дюймов
5,25 дюймов

Пятое поколение ЭВМ 1974 - …гг.
В 1974 году несколько фирм объявила о создании на основе микропроцессора Intel-8008 компьютера, т.е. устройства выполняющего те же функции, что и большая ЭВМ. В начале 1975 года появился первый коммерчески распространенный компьютер, построенный на основе микропроцессора Intel - 8080.
Apple 1 - один из первых персональных компьютеров (1976)
Альтаир 8800

Первые комплектные компьютеры
Apple 2
Apple 3

Портативные персональные компьютеры
Портативные персональные компьютеры (переносные компьютеры) - компьютеры, имеющие небольшие габаритные размеры и вес, совмещающие в себе как внутренние элементы системного блока, так и устройства ввода-вывода.
Первым портативным персональным компьютером называют Osborne-1 (1981). Его процессор ZiLOG Z80A, 64 Кбайт оперативной памяти, клавиатура, модем, два дисковода 5,25-дюйма помещались в складном чемоданчике. Все это весило свыше 10 кг.

IBM PC
В 1980 году руководство IBM приняло решение о создании персонального компьютера. При его конструировании был применен принцип открытой архитектуры: составные части были универсальными, что позволяло модернизировать компьютер по частям. Появление IBM PC в 1981 году породило лавинообразный спрос на персональные компьютеры, которые стали теперь орудием труда людей самых разных профессий. Наряду с этим возник гигантский спрос на программное обеспечение и компьютерную периферию. На этой волне возникли сотни новых фирм, занявших свои ниши компьютерного рынка.

Современные носители информации
Дискета 3,5 дюйма
Жесткий диск
CD- и DVD-диски
Flash-диск

Код для вставки видеоплеера презентации на свой сайт:

tattooe.ru - Журнал современной молодежи