Астрономические приборы. История создания. Для всех и обо всем Старинные астрономические приборы

Небесные светила интересовали людей с незапамятных времён. Ещё до революционных открытий Галилея и Коперника астрономы предпринимали неоднократные попытки выяснить закономерности и законы движения планет и звёзд и использовали для этого специальные инструменты.

Инструментарий древних астрономов был настолько сложен, что современным учёным потребовались годы, чтобы разобраться в их устройстве.

Хотя странные углубления на поле Уоррен обнаружили с воздуха еще в 1976 году, только в 2004 году было определено, что это древний лунный календарь. Как полагают ученые, найденному календарю порядка 10 000 лет.

Он выглядит как 12 углублений, расположенных по дуге в 54 метра. Каждая лунка синхронизирована с лунным месяцем в календаре, причем с поправкой на лунную фазу.

Удивительно также то, что календарь в Уоррен Филд, который был построен за 6000 лет до Стоунхенджа, ориентирован на точку солнечного восхода в день зимнего солнцестояния.

2. Секстант Аль-Худжанди в росписи

Сохранилось очень мало сведений о Абу Махмуд Хамид ибн аль-Хидр Аль-Худжанди, кроме того, что он был математиком и астрономом, который жил на территории современных Афганистана, Туркменистана и Узбекистана. Также известно, что он создал один из крупнейших астрономических инструментов в 9-10 веках.

Его секстант был сделан в виде фрески, расположенной на 60-градусной дуге между двумя внутренними стенами здания. Эта огромная 43-метровая дуга была поделена на градусы. Мало того, каждый градус был с ювелирной точностью разделен на 360 частей, что сделало фреску потрясающе точным солнечным календарем.

Над дугой Аль-Худжанди располагался куполообразный потолок с отверстием посередине, сквозь которое солнечные лучи падали на древний секстант.

3. Вольвеллы и зодиакальный человек

В Европе на рубеже 14-го века учеными и врачами использовалась довольно странная разновидность астрономических инструментов – вольвеллы. Они выглядели, как несколько круглых листов пергамента с дыркой в центре, наложенные друг на друга.

Это позволяло перемещать круги, чтобы рассчитать все необходимые данные — от фаз Луны до положения Солнца в Зодиаке. Архаичный гаджет помимо своей основной функции также являлся символом статуса – только самые богатые люди могли обзавестись вольвеллой.

Также средневековые врачи верили, что каждая часть человеческого тела управляется своим созвездием. К примеру, за голову отвечал Овен, а за гениталии – Скорпион. Поэтому для диагностировки врачи использовали вольвеллы, чтобы рассчитать текущее положение Луны и Солнца.

К сожалению, вольвеллы были довольно хрупкими, поэтому сохранились лишь очень немногие из этих древних астрономических инструментов.

4. Древние солнечные часы

Сегодня солнечные часы служат разве что для украшения садовых лужаек. Но когда-то они были необходимы для отслеживания времени и движения Солнца по небу. Одни из старейших солнечных часов были найдены в Долине царей в Египте.

Они датируются 1550 — 1070 годами до н.э. и представляют собой круглый кусок известняка с нарисованным на нем полукругом (разделенным на 12 секторов) и отверстием в середине, в который вставлялся стержень, отбрасывающий тень.

Вскоре после обнаружения египетских солнечных часов, подобные были найдены в Украине. Они были захоронены с человеком, который умер 3200 — 3300 лет назад. Благодаря украинским часам ученые узнали, что цивилизация Зрубна обладала знаниями геометрии и умела высчитывать широту и долготу.

5. Небесный диск из Небры

Названный по имени немецкого города, где он был обнаружен в 1999 году, «небесный диск из Небры» является старейшим изображением космоса, когда-либо найденным человеком. Диск был захоронен рядом с долотом, двумя топорами, двумя мечами, и двумя кольчужными наручами около 3600 лет назад.

На бронзовом диске, покрытом слоем патины, были золотые вставки, изображающие Солнце, Луну и звезды из созвездий Орион, Андромеда и Кассиопея. Никто не знает, кто сделал диск, но расположение звезд говорит о том, что создатели были расположены на той же широте, что и Небра.

6. Астрономический комплекс Чанкильо

Древняя астрономическая обсерватория Чанкильо в Перу является настолько сложной, что ее истинное предназначение было обнаружено только в 2007 году с помощью компьютерной программы, предназначенной для выравнивания панелей солнечных батарей.

13 башен комплекса выстроены по прямой линии протяженностью 300 метров вдоль холма. Изначально ученые думали, что Чанкильо — фортификационные сооружения, но для форта это было невероятно плохое место, поскольку в нем не было ни оборонительных преимуществ, ни проточной воды, ни источников пропитания.

Но потом археологи поняли, что одна из башен смотрит на точку восхода солнца при летнем солнцестоянии, а другая – на точку восхода солнца при зимнем солнцестоянии. Построенные около 2300 лет назад башни являются старейшей солнечной обсерваторией в Америке. По этому древнему календарю до сих пор можно определить день года с максимум двухдневной погрешностью.

К сожалению, огромный солнечный календарь из Чанкильо — это единственный след цивилизации строителей этого комплекса, которые предшествовали инкам более чем на 1000 лет.

7. Звездный атлас Гигина

Звездный атлас Гигина, также известный как «Poetica Astronomica» был одним из первых сочинений с изображениями созвездий. Хотя авторство атласа спорно, он иногда приписывается Гаю Юлию Гигину (римскому писателю, 64 г. до н.э. — 17 г. н.э.). Другие утверждают, что работа имеет сходство с трудами Птолемея.

В любом случае, когда Poetica Astronomica была переиздана в 1482 году, она стала первым печатным произведением, в котором были показаны созвездия, а также мифы, связные с ними.

В то время как другие атласы предоставляли более конкретную математическую информацию, которая могла быть использована для навигации, Poetica Astronomica представляла собой более причудливую, литературную интерпретацию звезд и их историю.

8. Небесный глобус

Небесный глобус появился еще тогда, когда астрономы считали, что звезды перемещаются по небу вокруг Земли. Небесные глобусы, которые были созданы, чтобы отобразить эту небесную сферу, начали создавать еще древние греки, а первый глобус в форме, аналогичной современным глобусам, был создан немецким ученым Йоханнесом Шёнером.

На данный момент сохранились только два небесных глобуса Шёнера, которые являются настоящими произведениями искусства, изображающими созвездия в ночном небе. Старейший сохранившийся пример небесного глобуса датируется около 370 г. до н.э.

9. Армиллярная сфера.

Армиллярная сфера — астрономический инструмент, в котором несколько колец окружают центральную точку — была далеким родственником небесного глобуса.

Существовали два разных типа сфер — наблюдательная и демонстрационная. Первым из ученых, кто использовал подобные сферы, был Птолемей.

С помощью этого инструмента можно было определить экваториальные или эклиптические координаты небесных тел. Наряду с астролябией, армиллярная сфера использовалась моряками для навигации на протяжении многих веков.

10. Эль-Караколь, Чичен-Ица

Обсерватория Эль-Караколь в Чичен-Ице была построена между 415 и 455 г. н.э. Обсерватория была очень необычной — в то время как большинство астрономических инструментов были настроены на наблюдение за движением звезд или Солнца, Эль-Караколь (в переводе «улитка») была построена для наблюдения за движением Венеры.

Для майя Венера была священна – буквально все в их религии основывалось на культе этой планеты. Эль-Караколь помимо того, что был обсерваторией, также являлась храмом бога Кетцалькоатля.

Астрономические инструменты и приборы - оптические телескопы с разнообразными приспособлениями и приемниками излучения, радиотелескопы, лабораторные измерительные приборы и другие технические средства, служащие для проведения и обработки астрономических наблюдений.

Вся история астрономии связана с созданием новых инструментов, позволяющих повысить точность наблюдений, возможность вести исследования небесных светил в диапазонах электромагнитного излучения (см. ), недоступных невооруженному человеческому глазу.

Первыми еще в далекой древности появились угломерные инструменты. Самый древний из них - это гномон, вертикальный стержень, отбрасывающий солнечную тень на горизонтальную плоскость. Зная длину гномона и тени, можно определить высоту Солнца над горизонтом.

К старинным угломерным инструментам принадлежат и квадранты. В простейшем варианте квадрант - плоская доска в форме четверти круга, разделенного на градусы. Вокруг его центра вращается подвижная линейка с двумя диоптрами.

Широкое распространение в древней астрономии получили армиллярные сферы - модели небесной сферы с ее важнейшими точками и кругами: полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. В конце XVI в. лучшие по точности и изяществу астрономические инструменты изготовлял датский астроном Т. Браге. Его армиллярные сферы были приспособлены для измерения как горизонтальных, так и экваториальных координат светил.

Коренной переворот в методах астрономических наблюдений произошел в 1609 г., когда итальянский ученый Г. Галилей применил для обозрения неба зрительную трубу и сделал первые телескопические наблюдения. В совершенствовании конструкций телескопов-рефракторов, имеющих линзовые объективы, большие заслуги принадлежат И. Кеплеру.

Первые телескопы были еще крайне несовершенны, давали нечеткое изображение, окрашенное радужным ореолом.

Избавиться от недостатков пытались, увеличивая длину телескопов. Однако наиболее эффективными и удобными оказались ахроматические телескопы-рефракторы, которые начали изготовляться с 1758 г. Д. Доллондом в Англии.

Как сделать астролябию?

Астролябию для измерения гори­зонтальных углов и определения ази­мутов светил вы можете сделать, имея компас и транспортир. Остальные не­обходимые детали, чтобы не искажать показания компаса, нужно изготав­ливать из подручных немагнитных ма­териалов.

Вырежьте диск из многослойной фанеры, текстолита или оргстекла. Диаметр диска должен быть таким, чтобы на нем разместилась круговая шкала (лимб) из транспортиров и за ней оставалось бы свободное поле шириной 2-3 см. Если у вас есть, на­пример, самые маленькие из выпускае­мых транспортиров с дугой диаметром 7,5 см, то понадобится диск попереч­ником 14-15 см.

Другая важная деталь будущей астролябии - визирная планка. Ее вы сможете изготовить из полоски лату­ни или дюралюминия шириной 2- 3 см и длиной, превышающей попереч­ник диска на 5-6 см. Выступающие за край диска концы полоски изогните под прямым углом вверх и пропилите в них продолговатые или круговые визирные отверстия. На горизонталь­ной части планки симметрично центру проделайте две более широкие проре­зи, чтобы через них можно было ви­деть показания лимба. Готовую к мон­тажу визирную планку ее серединой с помощью болта, шайб и гаек при­крепите к центру диска так, чтобы она могла вращаться в горизонтальной плоскости. На визирную планку по центру укрепите компас. Для этого, как и для установки круговой шкалы, используйте имеющиеся в продаже высококачественные универсальные клеи. Лимб вы можете составить из двух транспортиров (школьные тран­спортиры изготовляются из легкого немагнитного материала).

В 1668 г. И. Ньютон построил телескоп-рефлектор, который был свободен от многих оптических недостатков, свойственных рефракторам. Позже совершенствованием этой системы телескопов занимались М. В. Ломоносов и В. Гершель. Последний добился особенно больших успехов в сооружении рефлекторов. Постепенно увеличивая диаметры изготавливаемых зеркал, В. Гершель в 1789 г. отшлифовал для своего телескопа самое большое зеркало (диаметром 122 см). В то время это был величайший в мире рефлектор.

В XX в. получили распространение зеркально-линзовые телескопы, конструкции которых были разработаны немецким оптиком Б. Шмидтом (1931) и советским оптиком Д. Д. Максутовым (1941).

В 1974 г. закончилось строительство самого большого в мире советского зеркального телескопа с диаметром зеркала 6 м. Этот телескоп установлен на Кавказе - в Специальной астрофизической обсерватории. Возможности нового инструмента огромны. Уже опыт первых наблюдений показал, что этому телескопу доступны объекты 25-й звездной величины, т. е. в миллионы раз более слабые, чем те, которые наблюдал Галилей в свой телескоп.

Современные астрономические инструменты используются для измерения точных положений светил на небесной сфере (систематические наблюдения такого рода позволяют изучать движения небесных светил); для определения скорости движения небесных светил вдоль луча зрения (лучевые скорости); для вычисления геометрических и физических характеристик небесных тел; для изучения физических процессов, происходящих в различных небесных телах; для определения их химического состава и для многих других исследований небесных объектов, которыми занимается астрономия.

К числу астрометрических инструментов относятся универсальный инструмент и близкий к нему по конструкции теодолит; меридианный круг, используемый для составления точных каталогов положений звезд; пассажный инструмент служащий для точных определений моментов прохождения звезд через меридиан места наблюдений, что нужно для службы времени.

Для фотографических наблюдений используются астрографы.

Для астрофизических исследований нужны телескопы со специальными приспособлениями, предназначенными для спектральных (объективная призма, астроспектрограф), фотометрических (астрофотометр), поляриметрических и других наблюдений.

Повысить проницающую силу телескопа удается путем применения в наблюдениях телевизионной техники (см. ), а также фотоэлектронных умножителей.

Созданы инструменты, позволяющие вести наблюдения небесных тел в различных диапазонах электромагнитного излучения, в том числе и в невидимом диапазоне. Это радиотелескопы и радиоинтерферометры, а также инструменты, применяемые в рентгеновской астрономии„ гамма-астрономии, инфракрасной астрономии.

Для наблюдений некоторых астрономических объектов разработаны специальные конструкции инструментов. Таковы солнечный телескоп, коронограф (для наблюдений солнечной короны), кометоискатель, метеорный патруль, спутниковая фотографическая камера (для фотографических наблюдений спутников) и многие другие.

В ходе астрономических наблюдений получают ряды чисел, астрофотографии, спектрограммы и другие материалы, которые для окончательных результатов должны быть подвергнуты лабораторной обработке. Такая обработка ведется с помощью лабораторных измерительных приборов.

Астрономические грабли

Свое название этот простой самодель­ный инструмент для измерения углов на небе получил за внешнее сходство с садовыми граблями.

Возьмите две дощечки длиной 60 и 30 см, шириной 4 см и толщиной 1 -1,5 см. Поверхность их тщательно обработайте, например, с помощью мелкоабразивной шкурки, а затем скрепите обе дощечки между собой в форме буквы Т.

К свободному торцу более длинной дощечки прикрепите визир - не­большую металлическую или пласт­массовую пластинку с отверстием. Приняв за центр окружности визир­ное отверстие, проведите на плоскости меньшей дощечки дугу радиусом 57,3 см с помощью шнура соответст­вующего размера. Один его конец прикрепите к визиру, а к другому концу привяжите карандаш. Вдоль прочерченной дуги укрепите ряд зубь­ев (штифтов) на расстоянии 1 см друг от друга. В качестве штифтов исполь­зуйте булавки или тонкие гвоздики, пробитые с нижней стороны дощечки (для безопасности гвоздики следует затупить напильником). Два штифта, отстоящие друг от друга на 1 см, при рассмотрении через визирное отвер­стие с расстояния 57,3 см видны на угловом расстоянии в 1°. Всего надо укрепить 21 или 26 штифтов, что бу­дет соответствовать наибольшему до­ступному для измерений углу 20° или 25°. Для удобства пользования инст­рументом первый, шестой и т. д. зубья сделайте выше остальных. Более вы­сокие зубья отметят интервалы в 5°.

Размер визирного отверстия должен быть таким, чтобы сквозь него можно было видеть все штифты одновре­менно.

Чтобы ваши астрономические граб­ли имели более приятный внешний вид, покрасьте их масляной краской. Штифты сделайте белыми - так они будут лучше видны вечером. Мень­шую дощечку раскрасьте светлыми и темными полосками шириной 5 см каждая. Их границами должны быть высокие штифты. Это также облегчит работу с инструментом в темное время суток.

Прежде чем воспользоваться астро­номическими граблями для наблюде­ния небесных объектов, испытайте их для определения угловых размеров и расстояний между земными пред­метами в дневное время.

Вы выполните более точные угло­вые измерения, если сделаете цену деления 0,5°. Для этого либо зубья ставьте на расстоянии 0,5 см друг от друга, либо увеличьте в 2 раза длину большей дощечки. Правда, пользо­ваться астрономическими граблями с ручкой столь большой длины менее удобно.

Для измерения положений изображений звезд на астрофотографиях и изображений искусственных спутников относительно звезд на спутникограммах служат кooрдинатно-измерительные машины. Для измерения почернений на фотографиях небесных светил, спектрограммах служат микрофотометры.

Важный прибор, необходимый для наблюдений, - астрономические часы.

При обработке результатов астрономических наблюдений используются электронные вычислительные машины.

Существенно обогатила наши представления о Вселенной радиоастрономия, зародившаяся в начале 30-х гг. нашего столетия. В 1943 г. советские ученые Л. И. Мандельштам и Н. Д. Папалекси теоретически обосновали возможность радиолокации Луны. Радиоволны, посланные человеком, достигли Луны и, отразившись от нее, вернулись на Землю. 50-е гг. XX в. - период необыкновенно быстрого развития радиоастрономии. Ежегодно радиоволны приносили из космоса новые удивительные сведения о природе небесных тел.

Сегодня радиоастрономия использует самые чувствительные приемные устройства и самые большие антенны. Радиотелескопы проникли в такие глубины космоса, которые пока остаются недосягаемыми для обычных оптических телескопов. Перед человеком раскрылся радиокосмос - картина Вселенной в радиоволнах.

Астрономические инструменты для наблюдений устанавливают на астрономических обсерваториях. Для строительства обсерваторий выбирают места с хорошим астрономическим климатом, где достаточно велико количество ночей с ясным небом, где атмосферные условия благоприятствуют получению хороших изображений небесных светил в телескопах.

Атмосфера Земли создает существенные помехи при астрономических наблюдениях. Постоянное движение воздушных масс размывает, портит изображение небесных тел, поэтому в наземных условиях приходится применять телескопы с ограниченным увеличением (как правило, не более чем в несколько сотен раз). Из-за поглощения земной атмосферой ультрафиолетовых и большей части длин волн инфракрасного излучения теряется огромное количество информации об объектах, являющихся источниками этих излучений.

В горах воздух чище, спокойнее, и поэтому условия для изучения Вселенной там более благоприятные. По этой причине еще с конца XIX в. все крупные астрономические обсерватории сооружались на вершинах гор или высоких плоскогорьях. В 1870 г. французский исследователь П. Жансен использовал для наблюдений Солнца воздушный шар. Такие наблюдения проводятся и в наше время. В 1946 г. группа американских ученых установила спектрограф на ракету и отправила ее в верхние слои атмосферы на высоту около 200 км. Следующим этапом заатмосферных наблюдений было создание орбитальных астрономических обсерваторий (ОАО) на искусственных спутниках Земли. Такими обсерваториями, в частности, являются советские орбитальные станции «Салют».

Орбитальные астрономические обсерватории разных типов и назначений прочно вошли в практику современных исследований космического пространства.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Астрономические инструменты и приборы - оптические телескопы с разнообразными приспособлениями и приемниками излучения, радиотелескопы, лабораторные измерительные приборы и другие технические средства, служащие для проведения и обработки астрономических наблюдений.

Вся история астрономии связана с созданием новых инструментов, позволяющих повысить точность наблюдений, возможность вести исследования небесных светил в диапазонах электромагнитного излучения (см. Электромагнитное излучение небесных тел), недоступных невооруженному человеческому глазу.

Первыми еще в далекой древности появились угломерные инструменты. Самый древний из них - это гномон, вертикальный стержень, отбрасывающий солнечную тень на горизонтальную плоскость.

Зная длину гномона и тени, можно определить высоту Солнца над горизонтом.

К старинным угломерным инструментам принадлежат и квадранты. В простейшем варианте квадрант - плоская доска в форме четверти круга, разделенного на градусы. Вокруг его центра вращается подвижная линейка с двумя диоптрами.

Широкое распространение в древней астрономии получили армиллярные сферы - модели небесной сферы с ее важнейшими точками и кругами: полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. В конце XVI в. лучшие по точности и изяществу астрономические инструменты изготовлял датский астроном Т. Браге. Его армиллярные сферы были приспособлены для измерения как горизонтальных, так и экваториальных координат светил.

Коренной переворот в методах астрономических наблюдений произошел в 1609 г., когда итальянский ученый Г. Галилей применил для обозрения неба зрительную трубу и сделал первые телескопические наблюдения. В совершенствовании конструкций телескопов-рефракторов, имеющих линзовые объективы, большие заслуги принадлежат И. Кеплеру.

Первые телескопы были еще крайне несовершенны, давали нечеткое изображение, окрашенное радужным ореолом.

Избавиться от недостатков пытались, увеличивая длину телескопов. Однако наиболее эффективными и удобными оказались ахроматические телескопы-рефракторы, которые начали изготовляться с 1758 г. Д. Доллондом в Англии.

В 1668 г. И. Ньютон построил телескоп-рефлектор, который был свободен от многих оптических недостатков, свойственных рефракторам. Позже совершенствованием этой системы телескопов занимались М. В. Ломоносов и В. Гершель. Последний добился особенно больших успехов в сооружении рефлекторов. Постепенно увеличивая диаметры изготавливаемых зеркал, В. Гершель в 1789 г. отшлифовал для своего телескопа самое большое зеркало (диаметром 122 см). В то время это был величайший в мире рефлектор.

В XX в. получили распространение зеркально-линзовые телескопы, конструкции которых были разработаны немецким оптиком Б. Шмидтом (1931) и советским оптиком Д. Д. Максутовым (1941).

Рисунок (см. оригинал)

В 1974 г. закончилось строительство самого большого в Этот телескоп установлен на Кавказе - в Специальной астрофизической обсерватории. Возможности нового инструмента огромны. Уже опыт первых наблюдений показал, что этому телескопу доступны объекты 25-й звездной величины, т. е. в миллионы раз более слабые, чем те, которые наблюдал Галилей в свой телескоп.

Современные астрономические инструменты используются для измерения точных положений светил на небесной сфере (систематические наблюдения такого рода позволяют изучать движения небесных светил); для определения скорости движения небесных светил вдоль луча зрения (лучевые скорости); для вычисления геометрических и физических характеристик небесных тел; для изучения физических процессов, происходящих в различных небесных телах; для определения их химического состава и для многих других исследований небесных объектов, которыми занимается астрономия.

К числу астрометрических инструментов относятся универсальный инструмент и близкий к нему по конструкции теодолит; меридианный круг, используемый для составления точных каталогов положений звезд; пассажный инструментслужащий для точных определений моментов прохождения звезд через меридиан места наблюдений, что нужно для службы времени.

Для фотографических наблюдений используются астрографы.

Для астрофизических исследований нужны телескопы со специальными приспособлениями, предназначенными для спектральных (объективная призма, астроспектрограф), фотометрических (астрофотометр), поляриметрических и других наблюдений.

Повысить проницающую силу телескопа удается путем применения в наблюдениях телевизионной техники (см. Телевизионный телескоп), а также фотоэлектронных умножителей.

Созданы инструменты, позволяющие вести наблюдения небесных тел в различных диапазонах электромагнитного излучения, в том числе и в невидимом диапазоне. Это радиотелескопы и радиоинтерферометры, а также инструменты, применяемые в рентгеновской астрономии, гамма-астрономии, инфракрасной астрономии.

Для наблюдений некоторых астрономических объектов разработаны специальные конструкции инструментов. Таковы солнечный телескоп, коронограф (для наблюдений солнечной короны), кометоискатель, метеорный патруль, спутниковая фотографическая камера (для фотографических наблюдений спутников) и многие другие.

В ходе астрономических наблюдений получают ряды чисел, астрофотографии, спектрограммы и другие материалы, которые для окончательных результатов должны быть подвергнуты лабораторной обработке. Такая обработка ведется с помощью лабораторных измерительных приборов.

Для измерения положений изображений звезд на астрофотографиях и изображений искусственных спутников относительно звезд на спутникограммах служат координатно-измерительные машины. Для измерения почернений на фотографиях небесных светил, спектрограммах служат микрофотометры.

Важный прибор, необходимый для наблюдений, - астрономические часы.

При обработке результатов астрономических наблюдений используются электронные вычислительные машины.

Существенно обогатила наши представления о Вселенной радиоастрономия, зародившаяся в начале 30-х гг. нашего столетия. В 1943 г. советские ученые Л. И. Мандельштам и Н. Д. Папалекси теоретически обосновали возможность радиолокации Луны. Радиоволны, посланные человеком, достигли Луны и, отразившись от нее, вернулись на Землю. 50-е гг. XX в. - период необыкновенно быстрого развития радиоастрономии. Ежегодно радиоволны приносили из космоса новые удивительные сведения о природе небесных тел.

Сегодня радиоастрономия использует самые чувствительные приемные устройства и самые большие антенны. Радиотелескопы проникли в такие глубины космоса, которые пока остаются недосягаемыми для обычных оптических телескопов. Перед человеком раскрылся радиокосмос - картина Вселенной в радиоволнах.

Астрономические инструменты для наблюдений устанавливают на астрономических обсерваториях. Для строительства обсерваторий выбирают места с хорошим астрономическим климатом, где достаточно велико количество ночей с ясным небом, где атмосферные условия благоприятствуют получению хороших изображений небесных светил в телескопах.

Атмосфера Земли создает существенные помехи при астрономических наблюдениях. Постоянное движение воздушных масс размывает, портит изображение небесных тел, поэтому в наземных условиях приходится применять телескопы с ограниченным увеличением (как правило, не более чем в несколько сотен раз). Из-за поглощения земной атмосферой ультрафиолетовых и большей части длин волн инфракрасного излучения теряется огромное количество информации об объектах, являющихся источниками этих излучений.

В горах воздух чище, спокойнее, и поэтому условия для изучения Вселенной там более благоприятные. По этой причине еще с конца XIX в. все крупные астрономические обсерватории сооружались на вершинах гор или высоких плоскогорьях. В 1870 г. французский исследователь П. Жансен использовал для наблюдений Солнца воздушный шар. Такие наблюдения проводятся и в наше время. В 1946 г. группа американских ученых установила спектрограф на ракету и отправила ее в верхние слои атмосферы на высоту около 200 км. Следующим этапом заатмосферных наблюдений было создание орбитальных астрономических обсерваторий (ОАО) на искусственных спутниках Земли. Такими обсерваториями, в частности, являются советские орбитальные станции «Салют».

Орбитальные астрономические обсерватории разных типов и назначений прочно вошли в практику современных исследований космического пространства.


Небесные светила интересовали людей с незапамятных времён. Ещё до революционных открытий Галилея и Коперника астрономы предпринимали неоднократные попытки выяснить закономерности и законы движения планет и звёзд и использовали для этого специальные инструменты. Инструментарий древних астрономов был настолько сложен, что современным учёным потребовались годы, чтобы разобраться в их устройстве.

1. Календарь из Уоррен Филда


Хотя странные углубления на поле Уоррен обнаружили с воздуха еще в 1976 году, только в 2004 году было определено, что это древний лунный календарь. Как полагают ученые, найденному календарю порядка 10 000 лет. Он выглядит как 12 углублений, расположенных по дуге в 54 метра. Каждая лунка синхронизирована с лунным месяцем в календаре, причем с поправкой на лунную фазу. Удивительно также то, что календарь в Уоррен Филд, который был построен за 6000 лет до Стоунхенджа, ориентирован на точку солнечного восхода в день зимнего солнцестояния.

2. Секстант Аль-Худжанди в росписи


Сохранилось очень мало сведений о Абу Махмуд Хамид ибн аль-Хидр Аль-Худжанди, кроме того, что он был математиком и астрономом, который жил на территории современных Афганистана, Туркменистана и Узбекистана. Также известно, что он создал один из крупнейших астрономических инструментов в 9-10 веках. Его секстант был сделан в виде фрески, расположенной на 60-градусной дуге между двумя внутренними стенами здания. Эта огромная 43-метровая дуга была поделена на градусы. Мало того, каждый градус был с ювелирной точностью разделен на 360 частей, что сделало фреску потрясающе точным солнечным календарем. Над дугой Аль-Худжанди располагался куполообразный потолок с отверстием посередине, сквозь которое солнечные лучи падали на древний секстант.

3. Вольвеллы и зодиакальный человек


В Европе на рубеже 14-го века учеными и врачами использовалась довольно странная разновидность астрономических инструментов – вольвеллы. Они выглядели, как несколько круглых листов пергамента с дыркой в центре, наложенные друг на друга. Это позволяло перемещать круги, чтобы рассчитать все необходимые данные - от фаз Луны до положения Солнца в Зодиаке. Архаичный гаджет помимо своей основной функции также являлся символом статуса – только самые богатые люди могли обзавестись вольвеллой.

Также средневековые врачи верили, что каждая часть человеческого тела управляется своим созвездием. К примеру, за голову отвечал Овен, а за гениталии – Скорпион. Поэтому для диагностировки врачи использовали вольвеллы, чтобы рассчитать текущее положение Луны и Солнца. К сожалению, вольвеллы были довольно хрупкими, поэтому сохранились лишь очень немногие из этих древних астрономических инструментов.

4. Древние солнечные часы


Сегодня солнечные часы служат разве что для украшения садовых лужаек. Но когда-то они были необходимы для отслеживания времени и движения Солнца по небу. Одни из старейших солнечных часов были найдены в Долине царей в Египте. Они датируются 1550 - 1070 годами до н.э. и представляют собой круглый кусок известняка с нарисованным на нем полукругом (разделенным на 12 секторов) и отверстием в середине, в который вставлялся стержень, отбрасывающий тень. Вскоре после обнаружения египетских солнечных часов, подобные были найдены в Украине. Они были захоронены с человеком, который умер 3200 - 3300 лет назад. Благодаря украинским часам ученые узнали, что цивилизация Зрубна обладала знаниями геометрии и умела высчитывать широту и долготу.

5. Небесный диск из Небры

Названный по имени немецкого города, где он был обнаружен в 1999 году, «небесный диск из Небры» является старейшим изображением космоса, когда-либо найденным человеком. Диск был захоронен рядом с долотом, двумя топорами, двумя мечами, и двумя кольчужными наручами около 3600 лет назад. На бронзовом диске, покрытом слоем патины, были золотые вставки, изображающие Солнце, Луну и звезды из созвездий Орион, Андромеда и Кассиопея. Никто не знает, кто сделал диск, но расположение звезд говорит о том, что создатели были расположены на той же широте, что и Небра.

6. Астрономический комплекс Чанкильо


Древняя астрономическая обсерватория Чанкильо в Перу является настолько сложной, что ее истинное предназначение было обнаружено только в 2007 году с помощью компьютерной программы, предназначенной для выравнивания панелей солнечных батарей. 13 башен комплекса выстроены по прямой линии протяженностью 300 метров вдоль холма. Изначально ученые думали, что Чанкильо - фортификационные сооружения, но для форта это было невероятно плохое место, поскольку в нем не было ни оборонительных преимуществ, ни проточной воды, ни источников пропитания.

Но потом археологи поняли, что одна из башен смотрит на точку восхода солнца при летнем солнцестоянии, а другая – на точку восхода солнца при зимнем солнцестоянии. Построенные около 2300 лет назад башни являются старейшей солнечной обсерваторией в Америке. По этому древнему календарю до сих пор можно определить день года с максимум двухдневной погрешностью. К сожалению, огромный солнечный календарь из Чанкильо - это единственный след цивилизации строителей этого комплекса, которые предшествовали инкам более чем на 1000 лет.

7. Звездный атлас Гигина


Звездный атлас Гигина, также известный как «Poetica Astronomica» был одним из первых сочинений с изображениями созвездий. Хотя авторство атласа спорно, он иногда приписывается Гаю Юлию Гигину (римскому писателю, 64 г. до н.э. - 17 г. н.э.). Другие утверждают, что работа имеет сходство с трудами Птолемея.

В любом случае, когда Poetica Astronomica была переиздана в 1482 году, она стала первым печатным произведением, в котором были показаны созвездия, а также мифы, связные с ними. В то время как другие атласы предоставляли более конкретную математическую информацию, которая могла быть использована для навигации, Poetica Astronomica представляла собой более причудливую, литературную интерпретацию звезд и их историю.

8. Небесный глобус


Небесный глобус появился еще тогда, когда астрономы считали, что звезды перемещаются по небу вокруг Земли. Небесные глобусы, которые были созданы, чтобы отобразить эту небесную сферу, начали создавать еще древние греки, а первый глобус в форме, аналогичной современным глобусам, был создан немецким ученым Йоханнесом Шёнером. На данный момент сохранились только два небесных глобуса Шёнера, которые являются настоящими произведениями искусства, изображающими созвездия в ночном небе. Старейший сохранившийся пример небесного глобуса датируется около 370 г. до н.э.

9. Армиллярная сфера


Армиллярная сфера - астрономический инструмент, в котором несколько колец окружают центральную точку - была далеким родственником небесного глобуса. Существовали два разных типа сфер - наблюдательная и демонстрационная. Первым из ученых, кто использовал подобные сферы, был Птолемей. С помощью этого инструмента можно было определить экваториальные или эклиптические координаты небесных тел. Наряду с астролябией, армиллярная сфера использовалась моряками для навигации на протяжении многих веков.

10. Эль-Караколь, Чичен-Ица


Обсерватория Эль-Караколь в Чичен-Ице была построена между 415 и 455 г. н.э. Обсерватория была очень необычной - в то время как большинство астрономических инструментов были настроены на наблюдение за движением звезд или Солнца, Эль-Караколь (в переводе «улитка») была построена для наблюдения за движением Венеры. Для майя Венера была священна – буквально все в их религии основывалось на культе этой планеты. Эль-Караколь помимо того, что был обсерваторией, также являлась храмом бога Кетцалькоатля.

Для тех, кто мечтает открыть для себя мир небесных светил, полезен будет , способный обучить любого новичка премудростям астрономии.

Небесные светила интересовали людей с незапамятных времён. Ещё до революционных открытий Галилея и Коперника астрономы предпринимали неоднократные попытки выяснить закономерности и законы движения планет и звёзд и использовали для этого специальные инструменты.

Инструментарий древних астрономов был настолько сложен, что современным учёным потребовались годы, чтобы разобраться в их устройстве.

1. Календарь из Уоррен Филда

Хотя странные углубления на поле Уоррен обнаружили с воздуха еще в 1976 году, только в 2004 году было определено, что это древний лунный календарь. Как полагают ученые, найденному календарю порядка 10 000 лет.

Он выглядит как 12 углублений, расположенных по дуге в 54 метра. Каждая лунка синхронизирована с лунным месяцем в календаре, причем с поправкой на лунную фазу.

Удивительно также то, что календарь в Уоррен Филд, который был построен за 6000 лет до Стоунхенджа, ориентирован на точку солнечного восхода в день зимнего солнцестояния.

2. Секстант Аль-Худжанди в росписи

Сохранилось очень мало сведений о Абу Махмуд Хамид ибн аль-Хидр Аль-Худжанди, кроме того, что он был математиком и астрономом, который жил на территории современных Афганистана, Туркменистана и Узбекистана. Также известно, что он создал один из крупнейших астрономических инструментов в 9-10 веках.

Его секстант был сделан в виде фрески, расположенной на 60-градусной дуге между двумя внутренними стенами здания. Эта огромная 43-метровая дуга была поделена на градусы. Мало того, каждый градус был с ювелирной точностью разделен на 360 частей, что сделало фреску потрясающе точным солнечным календарем.

Над дугой Аль-Худжанди располагался куполообразный потолок с отверстием посередине, сквозь которое солнечные лучи падали на древний секстант.

3. Вольвеллы и зодиакальный человек

В Европе на рубеже 14-го века учеными и врачами использовалась довольно странная разновидность астрономических инструментов – вольвеллы. Они выглядели, как несколько круглых листов пергамента с дыркой в центре, наложенные друг на друга.

Это позволяло перемещать круги, чтобы рассчитать все необходимые данные - от фаз Луны до положения Солнца в Зодиаке. Архаичный гаджет помимо своей основной функции также являлся символом статуса – только самые богатые люди могли обзавестись вольвеллой.

Также средневековые врачи верили, что каждая часть человеческого тела управляется своим созвездием. К примеру, за голову отвечал Овен, а за гениталии – Скорпион. Поэтому для диагностировки врачи использовали вольвеллы, чтобы рассчитать текущее положение Луны и Солнца.

К сожалению, вольвеллы были довольно хрупкими, поэтому сохранились лишь очень немногие из этих древних астрономических инструментов.

4. Древние солнечные часы

Сегодня солнечные часы служат разве что для украшения садовых лужаек. Но когда-то они были необходимы для отслеживания времени и движения Солнца по небу. Одни из старейших солнечных часов были найдены в Долине царей в Египте.

Они датируются 1550 - 1070 годами до н.э. и представляют собой круглый кусок известняка с нарисованным на нем полукругом (разделенным на 12 секторов) и отверстием в середине, в который вставлялся стержень, отбрасывающий тень.

Вскоре после обнаружения египетских солнечных часов, подобные были найдены в Украине. Они были захоронены с человеком, который умер 3200 - 3300 лет назад. Благодаря украинским часам ученые узнали, что цивилизация Зрубна обладала знаниями геометрии и умела высчитывать широту и долготу.

5. Небесный диск из Небры

Названный по имени немецкого города, где он был обнаружен в 1999 году, «небесный диск из Небры» является старейшим изображением космоса, когда-либо найденным человеком. Диск был захоронен рядом с долотом, двумя топорами, двумя мечами, и двумя кольчужными наручами около 3600 лет назад.

На бронзовом диске, покрытом слоем патины, были золотые вставки, изображающие Солнце, Луну и звезды из созвездий Орион, Андромеда и Кассиопея. Никто не знает, кто сделал диск, но расположение звезд говорит о том, что создатели были расположены на той же широте, что и Небра.

6. Астрономический комплекс Чанкильо

Древняя астрономическая обсерватория Чанкильо в Перу является настолько сложной, что ее истинное предназначение было обнаружено только в 2007 году с помощью компьютерной программы, предназначенной для выравнивания панелей солнечных батарей.

13 башен комплекса выстроены по прямой линии протяженностью 300 метров вдоль холма. Изначально ученые думали, что Чанкильо - фортификационные сооружения, но для форта это было невероятно плохое место, поскольку в нем не было ни оборонительных преимуществ, ни проточной воды, ни источников пропитания.

Но потом археологи поняли, что одна из башен смотрит на точку восхода солнца при летнем солнцестоянии, а другая – на точку восхода солнца при зимнем солнцестоянии. Построенные около 2300 лет назад башни являются старейшей солнечной обсерваторией в Америке. По этому древнему календарю до сих пор можно определить день года с максимум двухдневной погрешностью.

К сожалению, огромный солнечный календарь из Чанкильо - это единственный след цивилизации строителей этого комплекса, которые предшествовали инкам более чем на 1000 лет.

7. Звездный атлас Гигина

Звездный атлас Гигина, также известный как «Poetica Astronomica» был одним из первых сочинений с изображениями созвездий. Хотя авторство атласа спорно, он иногда приписывается Гаю Юлию Гигину (римскому писателю, 64 г. до н.э. - 17 г. н.э.). Другие утверждают, что работа имеет сходство с трудами Птолемея.

В любом случае, когда Poetica Astronomica была переиздана в 1482 году, она стала первым печатным произведением, в котором были показаны созвездия, а также мифы, связные с ними.

В то время как другие атласы предоставляли более конкретную математическую информацию, которая могла быть использована для навигации, Poetica Astronomica представляла собой более причудливую, литературную интерпретацию звезд и их историю.

8. Небесный глобус

Небесный глобус появился еще тогда, когда астрономы считали, что звезды перемещаются по небу вокруг Земли. Небесные глобусы, которые были созданы, чтобы отобразить эту небесную сферу, начали создавать еще древние греки, а первый глобус в форме, аналогичной современным глобусам, был создан немецким ученым Йоханнесом Шёнером.

На данный момент сохранились только два небесных глобуса Шёнера, которые являются настоящими произведениями искусства, изображающими созвездия в ночном небе. Старейший сохранившийся пример небесного глобуса датируется около 370 г. до н.э.

9. Армиллярная сфера.

Армиллярная сфера - астрономический инструмент, в котором несколько колец окружают центральную точку - была далеким родственником небесного глобуса.

Существовали два разных типа сфер - наблюдательная и демонстрационная. Первым из ученых, кто использовал подобные сферы, был Птолемей.

С помощью этого инструмента можно было определить экваториальные или эклиптические координаты небесных тел. Наряду с астролябией, армиллярная сфера использовалась моряками для навигации на протяжении многих веков.

10. Эль-Караколь, Чичен-Ица

Обсерватория Эль-Караколь в Чичен-Ице была построена между 415 и 455 г. н.э. Обсерватория была очень необычной - в то время как большинство астрономических инструментов были настроены на наблюдение за движением звезд или Солнца, Эль-Караколь (в переводе «улитка») была построена для наблюдения за движением Венеры.

Для майя Венера была священна – буквально все в их религии основывалось на культе этой планеты. Эль-Караколь помимо того, что был обсерваторией, также являлась храмом бога Кетцалькоатля.

tattooe.ru - Журнал современной молодежи