Правило тициуса-боде или закон планетных расстояний. Правило XVIII века в большинстве планетарных систем выполняется лучше, чем в Солнечной Закон тициуса боде

ПРАВИЛО ТИЦИУСА-БОДЕ

Гравитация, вероятности, и Устойчивость Солнечной системы

Тот, кто занимался вычислениями знает, какое испытываешь удовольствие, когда, используя новую формулу, получаешь результат, отличающийся от ожидаемого, к примеру, в 1.000036 или 0.99995 раз. Это вдохновляет. Чувствуешь себя очень умным, чуть ли не Эйнштейном. Показываешь это на обозрение народу. А потом вдруг обнаруживаешь, что единицы измерения не сходятся. Е-мае какой позор. Природа сыграла злую шутку. Это я говорю к тому, что этап вдохновения от численных совпадений мной уже пройден. А здесь я попытаюсь критически посмотреть на странные результаты по вычислениям орбит планет. Сразу замечу, что прецеденты здесь уже были. Так хорошо известно правило Тициуса-Боде.

Правило Тициуса-Боде a = 0.1(3*2 n +4) астр. ед., где: а -- среднее расстояние от планеты до Солнца в астрономических единицах; n = "минус бесконечность" для Меркурия; n = 0 для Венеры; n = 1 для Земли; n = 2 для Марса; n = 3 для пояса астероидов (обломки Фаэтона?); n = 4 для Юпитера...

Отношение вычисленных радиусов к наблюдаемым показаны ниже:

Точность результатов удивляет, но увы, правило Тициуса-Боде не основано на каких-нибудь физических принципах.

Иван Макарченко указал на существование другой закономерности в расположении планет:

Золотое сечение (1+sqrt(5))/2=1.62 (если не вpу).

Твоя правда: 1.6180339887... - изумительное число, но в предложенной схеме точность пониже, и опять таки нет физического обоснования предлагаемой закономерности.

Это было, так сказать, отступление, указывающее на то, что в Солнечной системе существуют какие-то резонансы.

У меня получается несколько другая картина.
Во-первых, использовано физическое обоснование, и получены неожиданные странные совпадения на основании формулы r = sqr(Gm/(Hc)), где r - радиус устойчивой орбиты, H - константа Хаббла, m - масса планеты.
Во-вторых, в применяемой мной формуле использована сравнительно точная константа Хаббла, полученная мной независимым способом, и уточненная гравитационная постоянная.
H = 2.374684198 E-18 об/сек = 73.27511 км/с/Мпк
G = 6.671479888 E-11 Нм 2 /кг 2

А это значит, что тот, кто мог бы раньше меня получить формулу r = sqr(Gm/(Hc)), вряд ли заметил бы закономерность, поскольку он использовал бы очень неточное значение постоянной Хаббла, которое варьируется от 50 до 100 км/с/Мпк. То есть, я полагаю, что эта закономерность найдена впервые; что её доказательство автоматически является доказательством того, что константа Хаббла действительно равна 73.27511 км/с/Мпк, либо очень близка к этому значению и может быть чуть-чуть изменена, если мое уточнение G окажется ошибочным.

Следовательно, нужно оценить вероятность того, являются ли полученные совпадения случайными либо это действительно закономерность.

Итак, где же совпадения? Пытаясь найти радиусы устойчивых орбит по формуле r = sqr(Gm/(Hc)), мы обнаруживаем, что ошибка для большинства планет получается не в случайное число раз больше или меньше, а очень близка к единице, трем, пяти. А именно:

В эту "красоту" не вписывается Венера с ошибкой около 2p : 6,24206 / 2p = 1,0066,
Юпитер с ошибкой 17,13.
Hептун с ошибкой 0,68925 или 1 / 1,4509.
Плутон не в счет, орбита его сильно вытянута и вероятно неустойчива, а мы исследуем устойчивые орбиты. Спутники планет дают большую ошибку.

Предлагаемая формула для устойчивых обрит работает и в микромире, протон дает ошибку 9,5 раз по сравнению с комптоновской орбитой, а электрон в 9,6 раз по сравнению с классическим радиусом электрона. Hо там порядок в орбитах навела квантовая механика. Хотя визит постоянной Хаббла вместе с гравитационной константой на те масштабы очень интересен.

Для оценки вероятности случайного совпадения мы не берем ни протон, ни электрон, ни Плутон. Венера ни туда, ни сюда, тем не менее, пусть она вместе с Юпитером и Плутоном засчитываются в количество планет, опровергающих закономерность.

Итак, в рулетке принимают участие 8 планет. Какова вероятность того, что 5 из этих планет упадут в точки близкие к 1, 3, 5, 7?
Ограничимся пока семеркой.
Как решить эту задачу? Сколько раз нужно запускать рулетку, чтобы мы увидели, хотя бы один раз, чтобы 5 из 8-ми шаров остановились у делений 1, 3, 5, 7 на непрерывном полотне от 0 до 7 и отличались бы от этих чисел не больше чем в 1,01254; 1,00028; 1,0760; 1,0183; 1,0070 раз.

Я еще эту задачу не решил, так интуитивно думаю, что рулетку нужно запускать где-то миллиард раз.
А вы как думаете?
Что это доказывает?
Существование резонансов?
Согласен. А как насчет примененного значения константы Хаббла?
Случайность?

Думаю что нет. Константа Хаббла найдена правильно. Её точное значение определяется в этой работе по формуле:

H = 2m pr m el 2 cG / h 2 / a 2 .

Существует некоторая вероятность, что в этой формуле вместо массы протона может стоять атомная единица массы, или некоторая усредненная масса нуклона. Но пока весь пакет формул для определения главных физических констант, содержащих постоянную Хаббла, полностью согласуется с данными CODATA. Так что если постоянная Хаббла и изменится, то не больше чем на тысячные доли от получаемого по этой формуле значения.

Впервые я получил постоянную Хаббла, пользуясь формулой для нахождения устойчивых орбит планет r = sqr(Gm/(Hc)) где то в районе 1990 года, и считал её усредняя по планетам. Тогда я не знал формулы H = 2m pr m el 2 cG / h 2 / a 2 , полученной пару лет назад, и соответственно не видел квантования орбит. И лишь сейчас, в феврале 2001 года, я применил это точное значение константы Хаббла для определения радиусов устойчивых орбит, и увидел, что старая формула показывает квантование орбит. Вероятность случайного совпадения исчезающе мала. Бог должен был запускать рулетку миллиард раз, чтобы 5 из восьми планет оказались у орбит с квантовыми числами 1, 3, 5.

Следуя обратным путем, можно получить значение постоянной Хаббла через квантовые числа, радиусы и массы планет. Поскольку эти величины наиболее точно известны для планеты Земля, то мы запишем значение константы Хаббла, используя данные о Земле: квантовое число 5, масса 5.9736 *10 24 kg, главная полуось 1.4960 *10 11 m. Для гравитационной постоянной в первом случае возьмем значение 6.671479888 E-11 Нм 2 /кг 2 , полученное мной, во втором предлагаемое CODATA: 6.673 E-11 Нм 2 /кг 2 .

H = GM/(nr) 2 /c. n =5.
H 1 = 2,3759 E-18 об/сек = 73,314 км/с/Мпк
H 2 = 2,376 E-18 об/сек = 73,33 км/с/Мпк

Сравнивая значение H 1 с точным значением H = 2.374684198 E-18 об/сек, видим, что разница действительно составляет менее одной тысячной доли: 0.00053. Имея в виду то, что точный расчет орбит может вестись с учетом влияния других планет, спутников и т.п., мы будем использовать далее точное значение константы Хаббла, а полученные сейчас значения показывают лишь то, что значение Хаббла найдено верно, и в дальнейшем может быть уточнено не более, чем на тысячную долю. А сейчас можно смело пользоваться значением H = 73.3 км/с/Мпк.

Поиски квантовых чисел спутников планет

Составим полную таблицу для планет и их спутников с целью поиска закономерностей или квантовых чисел. В этой таблице мы будем предполагать, что отношение вычисленного радиуса к наблюдаемому стремится к некоторому целому квантовому числу, если отличие составляет не более двух десятых долей от целого, и обозначаем красным цветом. То есть, если мы видим число 17,13, то полагаем, что квантовое число данного спутника или планеты 17. Если это отличие больше чем две десятых, то квантовое число данной планеты не определено. Если результат находится между числами 6 и 1/6, то данная планета или спутник подтверждает закон устойчивых орбит, но не подтверждает квантование. Эти результаты полужирным шрифтом. Если планета или спутник не подтверждает ни квантование, ни закон устойчивых орбит, то эти результаты оставим черными. Другие странности выделим синим.

Объект Масса
объекта (*10
24 кг)
Среднее расстояние до Солнца (*10 9 м).
В скобках перигелий/афелий.
Для спутников планет - расстояние до планеты.
В скобках эксцентриситет орбиты.
Отношение вычисленного
радиуса к наблюдаемому
Меркурий 0.3302 57.91 (46.00 / 69.82; 0.2056) 3,038 ~ 3
Венера 4.8685 108.21 (107.48 / 108.94; 0.0067) 6,2421~ 2 p
Земля 5.9736
5.973538542
149.60 (147.09 / 152.10; 0.0167) 5,0014 ~ 5
Марс 0.64185 227.92 (206.62 / 249.23; 0.0935) 1,0760 ~ 1
Фаэтон ... доигрался ...
Юпитер 1 898.6 778.57 (740.52 / 816.62; 0.0489) 17,132 ~ 17
Сатурн 568.46 1433.53 (1352.55 / 1514.50; 0.0565) 5,0914 ~ 5
Уран 86.832 2872.46 (2741.30 / 3003.62; 0.0457) 0,99308 ~ 1
Нептун 102.43 4495.06 (4444.45 / 4545.67; 0.0113) 0,68925
Плутон 0.0125 5869.66 (4434.99 / 7304.33; 0.2444) 0.00583
. . Спутники Марса (*10 6 м) .
Фобос 10.6 9.378 (0.0151) 3.36
Деймос 2.4 23.459 (0.0005) 0.64
. (*10 20 кг) Луна и спутники Юпитера (*10 6 м) .
Луна 734.9 384.4 (0.0549) 215.9 ~ 216 = 12*18
Ио 893.3 421.6 (0.004) 217.0 ~ 217 = 7*31
Европа 479.7 670.9 (0.009) 99.94 ~ 100 = 10*10
Ганимед 1482 1070 (0.002) 110.1 ~ 110 = 10*11
Каллисто 1076 1883 (0.007) 53.33
Metis 0.001 127.96 ("0.041) 0.76
Adrastea 0.0002 128.98 (~0) 0.34
Amalthea 0.072 181.3 (0.003) 4.5
Thebe 0.008 221.90 (0.015) 1.2
Leda 0.00006 11 094 (0.148) 0.002
Himalia 0.095 11 480 (0.163) 0.082
Lysithea 0.0008 11 720 (0.107) 0.007
Elara 0.008 11 737 (0.207) 0.02
Ananke 0.0004 21 200 (0.169) 0.003
Carme 0.001 22 600 (0.207) 0.004
Pasiphae 0.002 23 500 (0.378) 0.006
Sinope 0.0008 23 700 (0.275) 0,004
. (*10 20 кг) Спутники Сатурна (*10 6 м) .
Mimas 0.375 185.52 (0.0202) 10,1 ~ 10
Enceladus 0.73 238.02 (0.0045) 11,0 ~ 11
Tethys 6.22 294.66 (0.0000) 25,9 ~ 26
Dione 11.0 377.40 (0.0022) 26,9 ~27
Rhea 23.1 527.04 (0.0010) 27,9 ~28
Титан 1345.5 1 221.83 (0.0292) 91,901 ~ 92
Hyperion 0.2 1 481.1 (0.1042) 0,92 ~ 1
Iapetus 15.9 3 561.3 (0.0283) 3,43
Prometheus 0.0014 139.353 (0.0024) 0,82
Pandora 0.0013 141.700 (0.0042) 0,78
Epimetheus 0.0054 151.422 (0.009) 1,49
Janus 0.0192 151.472 (0.007) 2,80
Phoebe 0.004 12 952 (0.1633) 0.015
. (*10 20 кг) Спутники Урана .
Miranda 0.66 129.39 (0.0027) 19,2
Ariel 13.4 191.02 (0.0034) 58,7
Umbriel 11.7 266.30 (0.0050) 39,3
Titania 35.2 435.91 (0.0022) 41,7
Oberon 30.1 583.52 (0.0008) 28,8
. (*10 20 кг) Спутники Нептуна .
Тритон 214.7 354.76 (0.000016) 126.4
Nereid 0.2 5 513.4 (0.7512) 0.25
. (*10 20 кг) Спутник Плутона .
Charon 19 19.600 (0.0) 681

Мы видим, что результатов обозначенных полужирным шрифтом, значительно больше, чем было бы в случае, если бы выбор орбиты был произволен. Это доказывает, что "расширение" пространства по закону Хаббла противоборствует ускорению Лапласа и поэтому мы наблюдаем Устойчивость Солнечной системы . С другой стороны, результатов окрашенных красным гораздо больше, чем было бы в случае произвольного падения орбит на континуум. Это доказывает квантование орбит в Солнечной системе. И наконец, то, что в формуле для определения радиусов использовано значение константы Хаббла, полученной по другим формулам, доказывает, что константа Хаббла найдена верно. В качестве иллюстрации я привожу таблицу, в которой я использую случайные значения постоянной Хаббла, и мы сравниваем результат, с последней колонкой, полученной на основе используемого здесь значения константы Хаббла.

Доля от H 0,5334 0,5795 0,29 0,302 0,775 1
Меркурий 4,16 3,990 5,65 5,53 3,45 3,04 ~ 3
Венера 8,55 8,20 11,6 11,4 7,09 6,24
Земля 6,85 6,57 9,29 9,102 5,68 5,001 ~ 5
Марс 1,47 1,41 2,00 1,958 1,22 1,08 ~ 1
Юпитер 23,5 22,5 31,8 31,2 19,5 17,1 ~ 17
Сатурн 6,97 6,69 9,46 9,27 5,78 5,09 ~ 5
Уран 1,36 1,30 1,85 1,81 1,13 0,99 ~ 1
Нептун 0,94 0,905 1,28 1,25 0,78 0,69
Плутон 0,008 0,0077 0,011 0,011 0,007 0.006

Для того, чтобы увидеть столбец подобный последнему, "рулетку" нужно запустить миллиард раз. То есть, только H, равное 73.3 км/с/Мпк (или кратное ему), может быть использовано в формуле для нахождения устойчивых орбит планет:

Из писем в группах новостей о правиле Тициуса-Боде и о моей работе

От: Nikolay_Fomin
Тема: Правило Тициуса-Боде. Как объяснить? - Пробуем объяснить.
Дата: 4 мая 2000 г. 14:23

...G.Sh. сообщил в новостях...

> N_Foma, ты ещё здесь сидишь?

Да, сижу... А ты? - Стоишь, что ли? Ну, проходи, садись... :)

> NF> Ты вот лучше, Олег, скажи, пожалуйста, какое объяснение правила Тициуса-Боде сейчас современная астрофизика дает?

> А надо? ;)

:) Ну, кому не надо, может, конечно, не интересоваться.

А мне, вот, интересно узнать, как согласуется с нынешней теорией гравитации закономерность, скрытая в ряде, образуемом значениями радиусов орбит планет солнечной системы (правило Тициуса-Боде)? Ведь, это же определенный порядок.

Как сегодня объясняют его возникновение? Это не галлюцинация, а правило, основанное на ФАКТе, за которых ты так стоишь! (см. письмо Горелику). Ничего не утверждая на все 100% добавлю, что этот факт в достаточно большой степени может подтверждать именно теорию Горелика, а не традиционную теорию гравитации. Т.е. вопрос с правилом Тициуса-БодЕ может быть определенным образом связан с "Дррррррр" и 734Гц или там еще с какой частотой (а точнее целой системой гармонических колебаний). Ты знаешь, что такое "интерференция" или "резонанс"?

Так вот как "резонируют" планеты, которые по теории Горелика вместе с Солнцем тоже обязаны быть осцилляторами? Чуешь, наверное? Похоже, что от вибрирующего Солнца вибрирует и само пространство вокруг Солнца, раз звезда это пространство (материю) кушает (по Горелику) и аж вибрирует от большого аппетита. Планеты со своими меньшими частотами - тоже по-своему вибрируют (чавкают помалу).

Солнце задает доминирующий ритм (прыгая, как поплавок на поверхности воды при клеве и разгоняя вокруг себя волны) и большую группу обертонов меньшей мощности. Планеты - это колебания маленьких поплавком от мелкой поклевки. От всех этих разноголосых колебаний в пространстве солнечной системы образуется общая интерференционная картина, задающая СИСТЕМНОЕ ЕДИНСТВО всех объектов солнечной системы, поскольку все вносят свой вклад в общую картину.

И вот катаются планеты по получившейся интерференционной картине между выпуклостями и впуклостей по траекториям, в которых им энергетически выгодно, - на заданных и главное - ЗАКОНОМЕРНО - определенных расстояниях от Солнца.

Почему орбиты не круговые? А потому, что интерференционная картина - "живая", т.е. меняется в некоторых пределах, раз многие участники (планеты) на месте не стоят.

Как ты думаешь в таком случае, где самый плохой "завибрировавшийся" участок солнечной системы расположен, который не дал и, возможно, не даст никогда планете образоваться? Догадаешься с трех раз, Георг? :)

Что же, астрофизики как и ранее - пока не могут сказать, почему планеты движутся именно по таким закономерно определенным орбитам, а не по другим - произвольным? Законы Кеплера тут никаким боком не относятся к делу как ты понимаешь.

Вот Олег Суханов и другие активные профессионалы в этой эхе ничего не говорят насчет интерпретации такого загадочного факта в солнечной системе, как правило Т-Б, а потому и я боюсь высказать некоторые мысли, - вдруг впросак попаду!

Ученого загадки должны волновать, Георг! А ты такой неожиданный вопрос для ученого задаешь: "А надо?". :) После такого из науки гонят в три шеи. Или в четыре. Так получается, что ты здесь как бы очень сильно стараешься отговорить всех заниматься исследованиями. :) У тебя задача, значит, - охлаждать порывы творческих людей что ль?

Вот бы Рентген задался таким же вопросом, как ты, когда на неожиданно засвеченную пластинку посмотрел, плюнул на все и пошел спать. (Кстати, как история науки говорит, некоторые так и сделали. И кто их теперь помнит?) Или Ньютон поленился бы свой закон всемирного тяготения написать, когда перо в руки взял. :)

Хотя может быть, такое отношение и отличает ортодоксов от неформалов - отношением к неизвестному? :) Одни одержимо копают, пытаясь всеми силами и, тратя свою единственную жизнь, докопаться до интересующей их истины, а другие устало отвечают отрицательно на самим себе поставленный вопрос: "А надо?". :)

> NF> Меня этот вопрос давно интересует - еще с детства.

> А тебя с детства не интересует вопрос о практическом совпадении угловых размеров Солнца и Луны? ;)

Еще как интересует, Георг! Этот вопрос аж с пеленок спать не дает! А ты знаешь? Расскажи!

Впрочем, это можно считать ПОКА совпадением вследствие единичности явления (или у Меркурия тоже?). А вот правило Тициуса-БодЕ - вряд ли!
- Уж больно много планет по нему крутятся (только Плутон отстает. Но он далеко, и ему можно на порядок, устанавливаемый Солнцем, чихать в бОльшей степени, чем другим. Он и чихает - в его области интерференционная картина уже весьма слаба и все там очень сглажено. Он даже не в плоскости вращения других планет немного оказался. - Т.е. за какую-то другую группу выпуклостей и впуклостей "зацепился").

Нарисованная картина, а не теория гравитации, вполне объясняет устойчивость солнечной системы. Без волновых процессов во Вселенной и соответственно интерференции волновых картин никаких устойчивостей в природе быть не может. Системообразование может быть связано именно с интерференцией. Вот проблема- что это такое вибрирует, какая "среда", какие колебания синхронизируют движение планет, звезд и т.д. Теория гравитации в том виде, в какой она принята сегодня, объяснить ситуацию не может.

Структура Солнечной системы - продукт динамической интерференционной картины распределения энергии в пространстве.

Да и вообще по философии пространство - форма существования материи, т.е. и есть материя. Почему бы его не поглощать, как считает Горелик, раз это даже не противоречит современной науке. Ну, а "Дррррррр" или "Фрррррр" - это у кого как шумит. - Пусть даже в голове, как указывабют некоторые ученые. Если у кого в голове вообще ничего нет, то там и шуметь, ведь, нечему. :))

Не надо оскорблять Горелика - я сичтаю, что у него интересные взгляды. И я могу их со своих позиций - своего понимания мироустройства, их обосновать. Мне даже кажется, что он немного не с тех позиций защищает свою теорию, как мог бы. Возможно его взгляды и окажутся неверными, но уж больно верно у него по-крупному: волновой характер процессов и круговорот материи во Вселенной - это я считаю - самые важные и самые сильные позиции, которые относительно легко защитить, поскольку в мире таких фактов - сколько угодно.

И это не выдумки. Давайте подискутируем по поводу волновой природы материи.

==== С уважением, Фома Н.

P.S. У Горелика раз уж пространство (материя) стекает в массы, и этим массам приказано вибрировать (осциллировать), то окружающее пространство тоже вибрирует (волны по пространству расходятся), как пластина с размещенными на ней осцилляторами. - Вынужденно вибрирует.

P.P.P.S. Волновые процессы в микромире определяют квантовые свойства квантовых систем, в т.ч. устойчивость "вращения" электронов вокруг ядра атома.

Интерференция определяет квантованность орбит планет, вращающихся вокруг Солнца. Т.е. солнечная система в определенном смысле (на крупном масштабе) - и в самом деле есть как бы "квантовая система", и поэтому в этом "определенном" смысле здесь можно привлечь аналогию с атомом - другой квантовой системой.

Интерфренция - и есть объяснение правила Тициуса-Боде. :) И теория Горелика имеет в этом смысле одну из привлекательных сторон - для меня, например, - т.к. вводит в рассмотрение волновую природу системной организации (интерференцию) и объясняет квантовый характер гравитационных процессов на макро масштабах. Может быть, "не с той стороны" наши ученые берутся за задачу построения квантовой гравитации?

Природа едина, а потому черты системы на микромасштабах могут, если не должны, проявляться и на других масштабах. Эти общие черты только надо уметь обнаруживать и не считать объекты на разных масштабах чуждыми друг другу. У них одна мать, однако, - Вселенная.

P.P.P.P.S.
А ты, Георг, можешь сказать, почему в Природе через 10 порядков на шкале масштабов "угнездились" системы с "ядерной" организацией (т.е. имеющих ядро)? А между этим "точками" представлены системы с неядерной (нецентрализованной) структурой?

Похоже, что в Природе есть некий ритм, который "протянулся" от микромира до мега мира по всей масштабной шкале. И этот ритм ни с какими известными законами не связан. Здесь также сказывается ритмообразующий характер природы. Причем эта закономерность связывает системы всех масштабов в ЕДИНСТВО. Это мы смотрим на природу не на всю в целом, а в ее отдельных фрагментах. Причем на каждом масштабном уровне смотрим по-разному, придумывая плохо "стыкуемые" теории, городим между ними "интерфейсы", а потом считаем, что природа будто бы и на самом деле на всех масштабных уровнях очень отличается сама от себя. Между тем принципы системной организации в Природе ЕДИНЫ. Эти принципы и надо иметь ввиду при исследованиях.

ЕДИНСТВО ВСЕХ ОБЪЕКТОВ ПРИРОДЫ - важнейший концептуальный принцип. Мне так кажется...

Хватит пока PPPSов. А ты говоришь: "А надо?"

Да, "Фома_N", Вы совершенно правы. На этом рисунке упрощенная модель решетки на масштабе от комптоновской длины протона, l pr , до граничной длины волны, l 0 = l pr *N = 408 км, где мы имеем "предел причинно-следственной связи", где два ближайших "листа в клетку" смещаются, при повороте на элементарный угол j = 2p /N, на одну линию решетки. Размер клетки = комптоновская длина протона. Количество листов N = 3.0909*10 20 , повсеместно используемое в этой работе. (На рисунке N=10).

На следующем рисунке масштаб увеличен в N раз, и мы переходим на масштабы от граничного, т.е. 408 км, до размеров замкнутой Вселенной L = l 0 *N = l pr *N 2 . Верхний "плоский" рисунок должен быть помещен в центр нижнего "объемного" рисунка, и линии верхнего рисунка продолжаются в линиях нижнего рисунка. Правая часть рисунка построена из расчета N=10, левая часть из расчета N=40. На самом деле, N везде в этой работе 3.0909*10 20 . На левой части рисунка видны области, вероятно, ответственные за правило Тициуса-Боде.

N = n 0 /H, где n 0 - граничная частота между фотоном и гравитоном, H - константа Хаббла.

Расстояния от планет Солнечной системы до Солнца возрастают согласно простому арифметическому правилу.

Есть что-то такое в нумерологии, что буквально завораживает людей. Будучи ученым, занимающимся общественно-просветительской деятельностью, я регулярно получаю письма от людей, нашедших очередную «разгадку» какой-либо тайны Вселенной посредством анализа последовательности десятичных знаков в записи числа π или массы одной из элементарных частиц. Логика у них простая: если найдена какая-то закономерность в числовой последовательности, благодаря которой удается объяснить какое-либо природное явление, значит за этим кроется что-то фундаментальное. Надуманным «законам» подобного рода в этой книге уделяется мало внимания, однако для правила Тициуса—Боде, хотя оно и относится к вышеупомянутой категории, следует сделать исключение (ничего предосудительного в том, как оно изначально было выведено и проверено, нет; просто со временем выяснилось, что оно не всегда работает, — и мы это увидим).

В 1766 году немецкий астроном и математик Иоганн Тициус заявил, что выявил простую закономерность в нарастании радиусов околосолнечных орбит планет. Он начал с последовательности 0, 3, 6, 12, ..., в которой каждый следующий член образуется путем удвоения предыдущего (начиная с 3; то есть 3 × 2 n , где n = 0, 1, 2, 3, ...), затем добавил к каждому члену последовательности 4 и поделил полученные суммы на 10. В итоге получились весьма точные предсказания (см. таблицу) расстояний известных на то время планет Солнечной системы от Солнца в астрономических единицах (1 а. е. равна среднему расстоянию от Земли до Солнца).

Совпадение прогноза с результатом действительно впечатляет, особенно если учесть, что открытый лишь в 1781 году Уран также вписался в предложенную Тициусом схему: по Тициусу — 19,6 а. е., фактически — 19,2 а. е. Открытие Урана подогрело интерес к «закону», прежде всего к таинственному провалу на удалении 2,8 а. е. от Солнца. Там, между орбитами Марса и Юпитера, должна быть планета — считали все. Неужели она столь мала, что ее невозможно обнаружить в телескопы?

В 1800 году даже была создана группа из 24 астрономов, ведших круглосуточные ежедневные наблюдения на нескольких самых мощных в ту эпоху телескопах, они даже дали своему проекту громкое название «Небесная стража», но, увы... Первую малую планету, обращающуюся по орбите между Марсом и Юпитером, открыли не они, а итальянский астроном Джузеппе Пиацци (Guiseppe Piazzi, 1746-1826), и произошло это не когда-нибудь, а в новогоднюю ночь 1 января 1801 года, и открытие это ознаменовало наступление ХIX столетия. Новогодний подарок оказался удален от Солнца на расстояние 2,77 а. е. Однако диаметр этого космического объекта (933 км) явно не позволял счесть ее искомой крупной планетой. Однако в течение всего нескольких лет после открытия Пиацци было обнаружено еще несколько малых планет, которые назвали астероидами , и сегодня их насчитывается много тысяч. Подавляющее большинство из них обращается по орбитам, близким к предсказываемым правилом Тициуса—Боде, и, по последним гипотезам, они представляют собой «строительный материал», который так и не сформировался в планету (см. Гипотеза газопылевого облака).

Немецкий астроном Иоганн Боде, будучи под большим впечатлением от выводов Тициуса, включил их в свой учебник по астрономии, изданный в 1772 году. Именно благодаря его роли как популяризатора его имя возникло в названии правила. Иногда его даже несправедливо называют просто правилом Боде.

И как реагировать человеку, столкнувшемуся с такой «магией» последовательности чисел? Я всегда рекомендую задающимся подобными вопросами придерживаться умного совета, который дал мне в свое время умудренный опытом преподаватель теории вероятностей и статистики. Он часто приводил пример поля для гольфа. «Предположим, — рассуждал он, — что мы задались целью рассчитать вероятность того, что шар для гольфа приземлится на точно заданную травинку. Такая вероятность будет практически нулевой. Но, после того, как мы ударили клюшкой по шару, шару ведь надо куда-то упасть. И рассуждать о том, почему шар упал именно на эту травинку, бессмысленно, поскольку, если бы он упал не на нее, он упал бы на одну из соседних».

Применительно к правилу Тициуса—Боде: шесть цифр, входящих в эту формулу и описывающих удаление планет от Солнца, можно уподобить шести шарам для гольфа. Представим себе вместо травинок всевозможные арифметические комбинации чисел, которые призваны дать результаты для расчета радиусов орбит. Из бесчисленного множества формул (а их можно насочинять даже больше, чем имеется травинок на поляне для гольфа) обязательно найдутся и такие, что по ним будут получены результаты, близкие к предсказываемым правилом Тициуса—Боде. И то, что правильные предсказания дала именно их формула, а не чья-либо еще — не более чем игра случая, и к настоящей науке это «открытие» отношения не имеет.

В реальной жизни всё оказалось даже проще, и к статистическим доводам для опровержения правила Тициуса—Боде прибегать не пришлось. Как это часто бывает, ложная теория была опровергнута новыми фактами, а именно открытием Нептуна и Плутона. Нептун обращается по очень неправильной, с точки зрения Тициуса—Боде, орбите (прогноз для его радиуса 38,8 а. е., в действительности — 30,1 а. е.). Что касается Плутона, то его орбита вообще лежит в плоскости, заметно отличающейся от орбит других планет, и характеризуется значительным эксцентриситетом, так что, само упражнение с применением правила становится бессмысленным.

Так что же, выходит, правило Тициуса—Боде относится к разряду псевдонаучных? Не думаю. И Тициус, и Боде искренне пытались отыскать математическую закономерность в строении Солнечной системы — и ученые продолжали и продолжают заниматься поисками подобного рода. Проблема в том, что ни тот, ни другой не пошли дальше игры чисел и не попытались отыскать физическую причину того, почему орбиты ближних планет подчиняются подмеченной ими закономерности. А без физического обоснования «законы» и «правила» подобного рода остаются чистой нумерологией — и, как показывают имеющиеся сегодня данные, весьма некорректной нумерологией.

Johann Elert Bode, 1748-1826

Немецкий астроном и математик, родился в Гамбурге. Астроном-самоучка, первый трактат по астрономии опубликовал в возрасте 17 лет. С 1772 года и до самой своей смерти — главный редактор «Астрономического ежегодника» (Astronomisches Jahrbuch) Берлинской академии наук, превративший его в прибыльное и престижное издание. В 1781 году предложил для открытой Вильямом Гершелем (William Herschel) новой планеты название Уран. С 1786 года — директор Астрономической обсерватории Берлинской академии. Составитель звездных атласов, которые переиздаются до наших дней. Самый известный из них — «Уранография» (Uranographia , 1801), который до сих пор считается лучшим и самым красочным звездным атласом в истории человечества. Автор геометрических границ между созвездиями, которые были пересмотрены лишь в 1931 году.

Johann Daniel Titius, 1729-96

Немецкий астроном, математик, физик и биолог. Родился в г. Конитц (Konitz), ныне Хойнице (Chojnice) в Польше. В 1752 году окончил Лейпцигский университет и остался при нем. Через четыре года перешел в Университет Виттенберга, в котором и проработал до конца жизни, занимая кафедры профессора математики и физики. К формулировке «правила» Тициуса подтолкнул осуществленный им перевод на немецкий книги французского натуралиста и естествоиспытателя Шарля Бонне (Charles Bonnet). Бонне утверждал, что в устройстве Солнечной системы присутствует гармония, свидетельствующая о ее божественном происхождении. В 1784 году Боде признал приоритет Тициуса в открытии правила, носящего их имя.

Показать комментарии (15)

Свернуть комментарии (15)

    С позиции гипотез небулярного типа к закону Боде-Тициуса можно предъявить целый ряд претензий. Прежде всего, закон антиматериалистичен, ведь в формуле Тициуса никак не задействованы массы планет. Между тем большая планета должна, по идее, иметь большую область питания и должна отделятся от планет большим межпланетным интервалом.

    Другое возражение связано с делением планет на гиганты и землеподобные. Резкое различие этих типов планет объясняется различными особенностями процесса их формирования, накладывающими отпечаток на все их свойства. По логике, эти особенности должны были сказаться и на взаимном расположении планет. Очень сомнительно, чтобы эти различия вписывались в единую форму.

    Следующая претензия - неуниверсальность закона, неприменимость его к аналогам планетной системы - спутниковым системам планет-гигантов.

    И, наконец, так ли уж применим закон к самому планетному ряду? Ясно, что планеты от Венеры до Сатурна не в счёт, поскольку они были известны при составлении закона. Остаются Уран и Нептун.

    Единственным веским аргументом в поддержку Закона является двухпроцентная близость радиуса орбиты Урана к значению, предсказанному формулой Тициуса. По мнению сторонников Закона такое совпадение почти равносильно доказательству его правильности. Но так ли это на самом деле? Точность ведь понятие относительное, а иногда катастрофична ошибка в миллионную долю.

    Как сказал какой-то древний мудрец: "всё познаётся в сравнении". Поступим и мы подобным образом - попробуем поставить себя на место Тициуса и сделать собственное следующее "предсказание".
    Рассмотрим числовой ряд: 0,723 ; 1 ; 1,534 ; 5,203 ; 9,539 ; (орбитальные радиусы планет от Венеры до Сатурна (Венера, Земля, Марс, Юпитер, Сатурн) в астрономических единицах).
    Возьмём для этих (известных Боде и Тициусу) планет отношения последующего члена к предыдущему:
    1/0,723=1,383 1,524/1=1,524 5,203/1,524=3,414 9,539/5,203=1,833
    Примем среднее арифметическое этих значений - 2,04 за отношение "Урана" (ещё не открытого) к Сатурну. Тогда для радиуса орбиты новой планеты получим R=19,45 , что ближе к истинному значению = 19,18 , чем получил Тициус (19,50).
    Конечно, проведя другие манипуляции с рядом мы могли бы ошибиться раза в полтора однако приведённый пример показывает что 2% точность не столь уж феноменальна и вполне может быть следствием чистой случайности.

    Другим аргументом сторонников Закона является предсказание Цереры. Но Церера не планета, а лишь один из множества астероидов Главного пояса (хотя и крупнейший). Поэтому значимость такого совпадения сомнительна. Следующая планета - Нептун в закон не вписывается, а Плутон нельзя принимать во внимание вследствие его "мелкоты" и большой эллиптичности орбиты (Тициус даже Меркурий не учитывал).

    Да, Закон сыграл огромную роль в деле открытия Нептуна и других небесных тел. Но роль эта - косвенная. Открытиям помогала вера в правильность Закона. Сам же Закон, вроде бы, надуман и явно не имеет физического смысла.

    Представим себе, что развитие астрономии пошло бы другим путём и все планеты были бы открыты случайно. И вот, в редакцию астрономического журнала поступила рукопись, подписанная некими авторами Боде и Тициусом, что ими найдена закономерность расположения планет. Вряд ли кто-то воспринял её всерьёз.

    И всё-таки в Законе Боде-Тициуса заложены два очень верных суждения. Первое - планеты (как и их спутники) имеют тенденцию располагаться в примерно геометрической прогрессии. Второе - орбиты планет (опять же, как и спутников) часто располагаются относительно независимо от масс. Здесь речь идёт об орбитальных резонансах - соизмеримостях периодов обращения. Например, за два оборота Сатурна Юпитер совершает примерно 5 оборотов, а Плутон обращается ровно дважды за три периода Нептуна. Если бы конфигурация протопланетного диска была немножко другой, массы Юпитера и Сатурна были бы несколько иными, но их относительное расположение практически не изменилось. Т.е. в противоположность непрерывному изменению масс, относительное расположение небесных тел меняется в некотором смысле "дискретно" - скачками.

    Хотя орбитальным резонансам до сих пор не найдено теоретического объяснения, их многочисленность как среди планет, так и их спутников не оставляют сомнений в неслучайности этой закономерности. Обычно резонансам отводится "второстепенная" роль в деле расположения орбит. Предполагается, что первоначально планеты/спутники формировались на каких-то других орбитах, а в резонанс вошли позже - за время жизни Солнечной системы - 4,6 млрд. лет. По мнению же автора планеты/спутники изначально формировались именно на резонансных орбитах. Иными словами, вместо Закона Боде-Тициуса расположением планет (а также их регулярных спутников) управляет "Закон Резонансов". Но у резонансных соотношений есть большой минус, препятствующий вытеснению ими Закона Боде-Тициуса. В отличие от всеохватного З Б-Т далеко не все планеты/спутники "обвязаны" ими.

    Автором найден новый тип соотношений связывающих друг с другом орбиты небесных тел. Проиллюстрируем эти соотношения, названные автором промежуточным орбитальным резонансом на следующем примере: Возьмём Венеру и Юпитер, орбитальные радиусы которых равны 0,723 и 5,203 астрономическим единицам, соответственно.

    Проделаем с этими числами несколько элементарных арифметических действий.

    (5,203+0,723) = 2,963 - это средний радиус частицы, обращающейся по эллипсу между орбитами Венеры и Юпитера (большая полуось этой "промежуточной" орбиты).
    2,963/5,203 = 0,5695 - отношение промежуточного среднего радиуса к радиусу орбиты Юпитера.
    Возводя это отношение в куб, получаем 0,1847, извлекая из которого квадратный корень, получаем число 0,4298.
    Каков смысл всех манипуляций? Мы получили отношение периода обращения промежуточной частицы (Венера-Юпитер) к периоду Юпитера (соглно 3-му закону Кеплера квадраты периодов соотносятся как кубы средних орбитальных радиусов).
    Что это за цифирь 0,4298 ? Умножив её на 7 получим 3,01. Значит, если бы между орбитами Юпитера и Венеры обращался астероид, он находился бы с Юпитером в резонансе 3/7.
    Что это - случайное совпадение? Таких "совпадений" как среди планет, так и спутников чересчур многовато. Например, за три периода Сатурна, промежуточная частица Сатурн-Нептун обернётся примерно трижды. Если запустить к Венере космический зонд, то через 4 (земных) года он практически встретится с ней, сделав 5 оборотов.
    В моих работах, размещённых на сайте http://astronomij.narod.ru/ (более последовательно в трактате "О законе", дано хорошее теоретическое объяснение как "обычным" орбитальным резонансам, так и обнаруженным мной "промежуточным". Показано, что как планетная система, так и спутниковые системы Юпитера, Сатурна, Урана сформировались благодаря их сочетанию.

    Ответить

    • Солнечной системе был свой эволюционный процесс.и то как она сейчас выглядит- есть результат этой эволюции.. Но можно предположить "идеальный" процес эволюции. Если параметры всех планет,а именно, расстояние до Солнца, скорость на орбите и период обращения вокруг Солнца выразить через параметры планеты Земля, Аз = 1 Tз = 1 Vз = 1 То возникнет общая формула взаимозависимых параметров каждой планеты. Аn = Tn Vn ! Где Аn -расстояние до Солнца. Тn -период обращения. Vn -скорость на орбите. n - порядковый номер планеты от Солнца. Но в то же время каждый параметр по отдельности можно выразить через общую формулу. А n = 1.111111111(4n - 12) Tn = 1.111111111(6n-18) Vn = 1.111111111(6 - 2n) ТО что в скобках -это степень. Но самое интересное из всего этого вытекает то, что в Солнечной системе по планету Плутон должно быть 12 планет, а не 9. Первая - пояс астероидов. Вторая - между поясом астероидов и планетой Юпитер. Третья - между Сатурном и Ураном!

      Ответить

      "Другое возражение связано с делением планет на гиганты и землеподобные. Резкое различие этих типов планет объясняется различными особенностями процесса их формирования, накладывающими отпечаток на все их свойства. По логике, эти особенности должны были сказаться и на взаимном расположении планет. Очень сомнительно, чтобы эти различия вписывались в единую форму." Земля и Юпитер даже легли на одну и ту же кубическую экстраполяцию диаграммы масса-светимость. Какие данные по звёздам тот деятель взял, чтоб получить такой результат, мне не известно, не уверен, что в эти ворота влезет хотя бы Солнце. Но планеты у него легли на одну и ту же кривую, не взаимодействуя между собой. В плане же орбитальных радиусов факт взаимодействия отчётливо виден со времён Ньютона, ускользает от восприятия только конкретика.

      Ответить

      "Следующая претензия - неуниверсальность закона, неприменимость его к аналогам планетной системы - спутниковым системам планет-гигантов." Универсальный закон был бы равно применим к Солнечной системе и к системе Глизе, но в любом случае не относится к спутникам хоть гигантских, да всё ж ПЛАНЕТ.

      Ответить

Я не астроном, я занимаюсь прикладной математикой, доктор технических наук...

Автор утверждает: "Применительно к правилу Тициуса-Боде: шесть цифр, входящих в эту формулу и описывающих удаление планет от Солнца, можно уподобить шести шарам для гольфа... Из бесчисленного множества формул (а их можно насочинять даже больше, чем имеется травинок на поляне для гольфа) обязательно найдутся и такие, что по ним будут получены результаты, близкие к предсказываемым правилом Тициуса-Боде. И то, что правильные предсказания дала именно их формула, а не чья-либо еще - не более чем игра случая, и к настоящей науке это "открытие" отношения не имеет".

Да, действительно теория интерполяции позволяет найти функцию проходящую через 6 точек... но функция будет сложной... а здесь простая функция, совсем простая...
Попробуйте взять произвольные 6 чисел и найти простую закономерность... устанете искавши, я вас уверяю...

так что таких случайностей не бывает:)))

Где S – синодический период планеты, относительно Меркурия.
3) После элементарных преобразований третьего закона Кеплера имеем:
a = ((T/T_M)*(M_S+m)/(M_S+m_M))^(2/3)*a_M
4) Преобразуем последнее выражение с использованием уравнения связи синодического и сидерического периода:
a = (1-(T_M/S))^(-2/3)*((M_S+m)/(M_S+m_M))^(1/3)*a_M
5) Воспользовавшись широко известным разложением в ряд Маклорена функции вида:
(1-x)^(-2/3)=1+∑^∞_(n=1)(∏^∞_(n=1)(2+(n-1)*3)/3^n*x^n/n!)
получим, что:
a = (1+∑^∞_(n=1)(∏^∞_(n=1)(2+(n-1)*3)/3^n*(T_M/S)^n/n!))* ((M_S+m)/(M_S+m_M))^(1/3)*a_M
- это и есть правило Тициуса-Боде с точки зрения классической механики Ньютона.
Чтобы в этом убедиться посмотрим на выражение известного правила:
a = 0.1*(3*2^m+4)*a.u.,
здесь a.u. – большая полуось орбиты Земли. Немного пофантазировав можно заметить, что при выносе 4 за скобку, мы получим произведение на 0.4 а.е., а это по догматам правила есть большая полуось орбиты Меркурия. Таким образом, получаем весьма нетривиальный вывод:
∑^∞_(n=1)(∏^∞_(n=1)(2+(n-1)*3)/3^n*(T_M/S)^n/n!) = ¾*2^m
Сумма ведет себя подобно степеням двойки! Неординарно, но факт. Даже можно объяснить, почему m для Меркурия равно бесконечности, поскольку синодического периода планеты относительно самой себя не существует!
Да, начиная с Нептуна правило не выполняется по одной простой причине аппроксимация суммы степенями двойки перестает работать. Степень m в правиле связана с отношением T_M/S, т.е. не с чем иным, как с орбитальным резонансом Меркурия с другими планетами Солнечной системы.
А теперь давайте еще раз трезвыми глазами физика-теоретика посмотрим на правило Тициуса-Боде:
r = (1+0.7767040*2^n)*0.38709893 a.u.
Цифры в правиле по очереди:
«1» - взялась во время разложения 3-го закона Кеплера в ряд Маклорена,
«0.38709893 a.u.» - большая полуось орбиты Меркурия (сайт NASA),
«2^n» - сумма из ряда Маклорена (да, это действительно так, до Нептуна все планеты с Меркурием в орбитальном резонансе кратном 2, но если честно Нептун от них не далеко ушел),
«0.7767040» - усредненный коэффициент «отличия» суммы из ряда Маклорена от «2^n». Именно благодаря его универсальности правило Тициуса-Боде и работает для целых 7 планет Солнечной системы. В идеале он, конечно, разнится для каждой из планет, но ведь суть правила в его универсальности, не так ли? (в XVIII веке его положили равным ¾ =0.75 и они были недалеки от правды!)
http://artefact.sosbb.ru/t303-topic

Ответить

Написать комментарий

В 1766 году немец по имени Иоганн Тициус который успел попробовать себя в астрономии, физике и математике, на досуге вывел довольно любопытное правило, позволяющее, зная расстояние от Солнца до Земли, рассчитать и расстояние до других планет . Как бы то ни было, на «открытие» Тициуса никто особого внимания не обратил, тем более и сам Иоганн не претендовал на роль великого астронома, а его формула расчета работала без всякого теоретического обоснования и вообще, выглядела скорее остроумной шуткой, чем подлинным научным инструментом.

Иоганн Тициус — астроном, физик, математик. Автор «правила Тациуса-Боде» позволяющего достаточно точно высчитать расстояние между планетами солнечной системы

Однако в 1772 году к идее Тициуса обратился другой немецкий астроном Иоганн Боде — он-то и оказался «популяризатором» новой теории, представившим формулу своего коллеги и земляка широкой общественности. С тех нор формула называется правилом Тициуса-Боде . И, хотя с момента открытия правила прошло уже больше двух веков, специалисты занятые изучением звездного неба до сих пор не выработали четкой позиции как обращаться с «правилом» — как со случайным совпадением или… впрочем, пусть каждый решит это для себя самостоятельно!

Как работает правило Тициуса-Боде

Расстояние от Земли до Солнца составляет 149,6 млн. километров, однако так как орбита Земли не идеально круглая, мы можем смело округлить это расстояние до 150 млн.км. Именно 150 млн. км — то расстояние, что называется астрономической едини­цей (а.е.).

Что сделал Тациус? Он сочинил довольно несложную формулу, которую можно записать в таком виде:

Rn = 0.4+(0.3 x 2 n)

  • Rn — среднее расстояние от Солнца до планеты с порядковым номером n, в астрономических единицах.
  • n — число, порядковый номер планеты, причем соответствует 2, Земле 1 (т.е. 1 а.е.), Венере — 0, Меркурию — бесконечность и т.п.

Вот так всё просто (несмотря на наличии того факта, что счет начинается даже не с нуля, а бесконечности — двойного нуля!). Почему в формуле фигурируют числа 0,4 и 0,3? Спросите у Тициуса — скорее всего он просто подобрал их эмпирически, без всякого теоретического обоснования.

Проверим как это работает? Да легко. Рассчитаем, например расстояние для Земли, уже хорошо нам известное.

0,4+(0,3 х 2 1) = 1 (а.е.)

Совпадение? Конечно совпадение, давайте рассчитаем расстояние для другой планеты, например для Марса?

0,4+(0,3 х 2 2) = 1,6 (а.е.), постойте, а сколько действительно астрономических единиц отделяет ? 1,52 а.е., но при этом нельзя забывать — орбита Марса — это эллипс, поэтому 1,52 это усредненное значение. Снова совпадение? Тогда давайте сделаем полный расчет для солнечной системы и посмотрим что получится в итоге.

Название n Действительное расстояние от Солнца, (а. е.) Расстояние от Солнца по правилу Тициуса - Воде, (а. е.)
1 Меркурий - 00 0,39 0,4
2 Венера 0 0,72 0,7
3 Земля 1 1,0 1,0
4 Марс 2 1,52 1,6
5 - 8 - 2,8
6 Юпитер 4 5,2 5,2
7 Сатурн 5 9,54 10,0
8 Уран 6 19,2 19,6
9 Нептун 7 30,07 38,8
10 Плутон 8 39,46

Откуда пошел миф о «пятой планете» и была ли она вообще?

К моменту публикации правила Тициуса-Боде ещё не были открыты Уран, Нептун и Плутон, поэтому данные приведенные в таблице сперва просто ошеломили научную общественность. Шутка вдруг стала приобретать какой-то мистический оттенок, особенно после того, как в 1781 году был открыт Уран, истинное положение которого (19,6 а.е.) почти соответствовало теоретическому (19,2 а.е.)!

И тут уже задумались многие научные светила — если «правило» точно (вернее почти точно) указывает на 7 известных планет, то… где та самая восьмая, а точнее пятая планета, предсказанная на расстоянии 2,8 а.е., между Марсом и Юпитером? Фактически, до этого момента никто и не обсуждал (и не предполагал) всерьез её наличие — ведь сразу после Марса шел Юпитер, и никаких признаков того, что между ними могло где-то вклинится ещё одно небесное тело не было. Фактически пресловутый миф о пятой планете (Фаэтоне) был «документально засвидетельствован» именно правилом Тициуса-Боде — других доказательств свидетельствующих о наличии ещё одного небесного тела в Солнечной системе, к концу 18-го века не существовало.

Широкое обсуждение вопроса «пятой планеты» состоялось на Астрономическом конгрессе в 1790 году, однако никакой ясности в этом вопросе не было ещё долгих десять лет, пока в 1801 году астроном Джузеппе Пиацци не открыл астероид Цереру, расположенный на расстоянии… 2,8 астрономических единиц от Солнца.

Правило Тициуса-Боде в ретроспективе

Открытие Цереры не стало триумфом правила Тициуса-Боде — несмотря на то, что этот астероид имел и был довольно солидного диаметра (950 км), все-таки это была явно не планета. Да и времена пошли другие — научные методы требовали научного подхода, а не несложной формулы, половина значений в которую подставлялась словно «от балды».

О правиле Тициуса-Боде стали постепенно забывать, и хотя по мере открытия других объектов пояса астероидов между Марсом и Юпитером, все чаще стала звучать версия о «погибшей пятой планете», но из авторитетного источника, правило снова откочевало в стан «забавных идей» и околонаучных трюков.

Открытие в 1846 г. планеты Нептун вообще поставило на истории «правила» крест (вместо предсказанных 30 а.е., Нептун располагался в 38,8 а.е. от Солнца), а открытие Плутона в 1930 г. — жирную точку (39,46 а.е. вместо предсказанных 77,2 а.е.).

Впрочем, как уже говорилось: правило Тициуса-Боде - это не закон, подобный, например, законам Кеплера или Ньютона, а правило , полученное из анализа имеющихся данных о расстояниях известных планет от Солнца. Просто некое удивительное соотношение, мимо которого проходили долгое время.

А к любому правилу имеются свои отклонения — во всяком случае ничего не обычного в таких отклонениях нет, иногда они даже служат подтверждением правил.

Взять, к примеру, ту же Цереру — хорошо, это вовсе не планета и то, что она оказалась именно на нужном расстоянии от Солнца — просто совпадение. Но ведь Плутон это тоже не совсем планета, верно? Тогда почему мы должны считать, что объект под номером 10 в списке Тициуса — это именно Плутон, ведь расчетное расстояние в 77, а.е. указывает даже не на окраину солнечной системы, а куда-то за край Пояса Койпера, в плохо изученное Облако Оорта?

Возможно совпадения в результатах вычислений по правилу Тициуса-Боде это просто случайное совпадение, но возможно это и «частично работающий» механизм, часть элементов которого работает в наше время также как в незапамятные времена, а часть безвозвратно утрачена и унесена рекой времени. Как, например, мифическая «пятая планета».

Александр Фролов,
в основе материала глава книги «Внуки Солнца», В.С.Гетман.

Представляет собой эмпирическую формулу, приблизительно описывающую расстояния между планетами Солнечной системы и Солнцем (средние радиусы орбит). Эта формула говорит о том, что расстояния между орбитами планет и орбитой Меркурия возрастают по закону геометрической прогрессии со знаменателем, примерно равным двойке (Нептун выпадает):

Рис.1. Формула Тициуса-Боде.

Планета i
Радиус орбиты (а. е.) Ri-Rm (Ri-Rm)/

(R i-1 -Rm)

по правилу фактический
Меркурий - ∞ Rm = 0,4 0,39 - -
Венера 0 0,7 0,72 0,33 -
Земля 1 1,0 1,00 0,61 1,8
Марс 2 1,6 1,52 1,13 1,9
Пояс астероидов 3 2,8 2,8 - 3,0 2,51 2,1
Юпитер 4 5,2 5,20 4,81 2,0
Сатурн 5 10,0 9,54 9,15 1,9
Уран 6 19,6 19,22 18,83 2,1
Нептун выпадает 30,06 - -
Плутон 7 38,8 39,5 39,11 2,1

Таблица 1. Средние расстояния до Солнца планет Солнечной
системы по формуле Тициуса-Боде и фактически.

Существует достаточно много различных теорий, претендующих на объяснение зависимости Тициуса-Боде: гравитационная, электромагнитная, небулярная, резонансная. Детальный анализ этих теорий был проведен американским астрономом М. Ньето в его книге "Закон Тициуса-Боде. История и теория." . Вывод оказался неутешительным. По мнению Ньето, ни одна из них "…не может объяснить происхождение геометрической прогрессии для планетных расстояний и в то же время устоять перед всей критикой". Прямое численное моделирование образования и перемещения планет под действием гравитационных сил также затруднено огромным объёмом вычислений. Скорее всего такое расположение орбит вообще невозможно объяснить на основании только естественных причин. Здесь еще нужно учесть, что новая теория переноса планетных орбит Хэла Левисона, ставит крест на всех прежних теориях.

Американский планетолог Харольд Левисон, работая в 2004 году в международной команде исследователей предложил новую модель формирования Солнечной системы, которая получила название модель Ниццы . Модель Ниццы допускает, что планеты-гиганты родились совсем на других орбитах, а затем перемещались в результате их взаимодействия с планетезималями, пока Юпитер и Сатурн, две внутренние планеты-гиганты, не вошли 3,9 млрд. лет тому назад в орбитальный резонанс 1:2, который дестабилизировал всю систему. Гравитационные силы обеих планет сработали тогда в одном направлении. Левисон считает, что это похоже на качели: каждый рассчитанный во времени толчок подбрасывает качели все выше. В случае с Юпитером и Сатурном каждый толчок гравитации растягивал орбиты планет, пока они не приблизились к их современной схеме. Нептун и Уран оказываются на орбитах с большим эксцентриситетом и вторгаются во внешний диск протопланентного вещества, сталкивая десятки тысяч планетезималей с прежде устойчивых орбит. Эти возмущения почти полностью рассеивают исходный диск из каменных и ледяных планетезималей: из него удаляется 99% его массы. Так началась катастрофа. Астероиды поменяли свои траектории и направились к Солнцу. Тысячи из них врезались в планеты внутренней Солнечной системы. Наконец, большие полуоси орбит планет-гигантов достигают своих современных значений, и динамическое трение с остатками диска планетезималей уменьшает их эксцентриситет и вновь делает орбиты Урана и Нептуна круговыми.

Теория Ниццы объясняет позднюю тяжёлую бомбардировку и отвечает на вопрос почему все лунные кратеры образовались практически одновременно 3,9 млрд. лет тому назад. Если бы масса Сатурна была несколько большей, порядка массы Юпитера, то как показывают расчеты, планеты земной группы были бы поглощены газовыми гигантами. И еще один вопрос. Если после такой катастрофической встряски, случайной казалось бы по своей природе, планеты выстроились на своих орбитах по закону Тициуса-Боде, то как тут мог поработать "Высший Разум"? Ответ такой: Воздействие сил, обеспечивающих универсальную эволюцию на всех ее уровнях: ...звездную, планетарную, эволюцию биосферы, антропогенез и социальную эволюцию, всегда представляло собой небольшое возмущение, качественно изменяющее (на временных интервалах достаточной длительности), развитие системы. Для стороннего наблюдателя такое возмущение представляется совершенно случайным. Для управляющей системы и объекта управления, оно носит информационный характер.

Может ли такое расположение планетных орбит быть случайным совпадением? Такое совпадение представляется чрезвычайно маловероятным. Действительно, радиусы орбит планет от Венеры до Плутона (Нептун выпадает), если их отсчитывать не от центра масс системы, а от орбиты Меркурия, образуют числовой ряд из восьми чисел: (0.33, 0.61, 1.13, 2.51, 4.81, 9.15, 18.83, 39.11), который мало отличается от геометрической прогрессии со знаменателем q = 2, табл. 1.

Отношение каждого последующего члена к предыдущему в этой последовательности образует ряд: (1.8, 1.9, 2.1, 2.0, 1.9, 2.1, 2.1), причем среднее значение знаменателя q = 1.98, т.е. q = 2.0 с точностью до десятых. Трудно поверить в то, что восемь случайных величин выстраивается в последовательность столь мало отличающуюся от простейшей геометрической прогрессии.

Кроме того оказалось, что это правило применимо и к другим планетным системам . Такое заявление сделали мексиканские ученые, изучая звездную систему 55 Рака. По мнению мексиканских астрономов, тот факт, что правило Тициуса-Боде выполняется в 55 Рака, показывает, что эта закономерность не является случайным свойством, присущим только Солнечной системе. Согласно последним данным, это правило в большинстве других планетарных систем выполняется даже лучше, чем в Солнечной .

Поскольку не понятно как может быть объяснено правило Тициуса-Боде естественными причинами, вполне можно предположить, что здесь поработали какие-то неведомые разумные силы, т.е. наша планетная система есть продукт разумного замысла (Intelligent design). Действительно, в чем суть правила Тициуса-Боде, в чем его смысл? В том, что существует выделенная орбита , орбита Меркурия , которая обозначает начало отсчета, нижнюю границу планетарной системы, начало координат с пометкой "0". Орбита, расстояния от которой до каждой из орбит по которым вращаются планеты Солнечной системы (движущиеся в первом приближении по окружностям), есть члены геометрической прогрессии со знаменателем два. Исключение составляет Нептун, однако вычисленная по этому же закону восьмая орбита тоже не пустует и занята карликовой планетой Плутон.

Рис.2. Массы планет. Планеты изображены шариками одинаковой плотности. Диаметр Солнца на этой диаграмме должен был бы быть в 10 раз больше диаметра Юпитера.

Здесь важно понимать следующее: правило Тициуса-Боде выполняется с хорошей точностью несмотря на огромный разброс (в четыре порядка) планет по массе. При этом планеты выстраиваются на своих орбитах по закону геометрической прогрессии ориентируясь не на Солнце и не на Юпитер, а на Меркурий, самую маленькую планету, масса которой ничтожно мала в сравнении с Юпитером (в шесть тысяч раз меньше). Цели, которые при этом преследовал неведомый проектировщик и строитель остаются неизвестными. Их диапазон может быть достаточно широк: от побочного проявления используемого масштаба до искусственной организации структуры планетной системы в целях "выращивания" разумной жизни на одной из планет и дальнейшей ее экспансии в космическое пространство.

Можно дать следующее правдоподобное объяснение (ни на что, впрочем не претендующее):

Орбиты Меркурия и Плутона есть по сути маркеры, т.е. они отмечают нижнюю и верхнюю границу планетной системы, где должна быть сосредоточена основная масса объектов, связанных с Солнцем гравитацией. Планеты сформировались и переместились на их нынешние почти круговые орбиты в пределах почти плоского диска, плоскости эклиптики. Эти восемь планет образуют две группы; земная группа: Меркурий, Венера, Земля и Марс и группа планет-гигантов – четыре внешние планеты: Юпитер, Сатурн, Уран и Нептун, резко отличающиеся по своему химическому составу от планет земной группы. На одной из четырех, наиболее подходящих планет в каждой из этих групп запускается программа зарождения и эволюции водно-углеродной и аммиачной жизни.

При такой интерпретации правила Тициуса-Боде можно предвидеть следующие вопросы:

Почему в состав прогрессии включена орбита Плутона, самой легкой планеты (планетоида), которому в 2006 году международный астрономический союз вообще отказал в статусе планеты? Кроме того, его орбита, в отличие от других, имеет значительный эксцентриситет 0,25 и наклон к плоскости эклиптики 17°.

Ответ такой:

Орбита Плутона задает верхнюю границу планетной системы. У Меркурия, орбита которого определяет ее нижнюю границу, также большой эксцентриситет (0,2) и угол наклона орбиты к плоскости эклиптики (7°), и масса на четыре порядка меньше массы Юпитера. Однако присутствие его в формуле Тициуса-Боде никто не оспаривает. Если отвлечься от "материальной составляющей" и считать, что положения планетных орбит всего лишь маркеры, то сразу же получает объяснение отсутствие какой-либо корреляции средних радиусов орбит с массой планет. (Правда непонятно что эти маркеры отмечают.) В этом как раз и выражается финальность устройства Солнечной системы, а также и в том, что отсчет расстояний идет не от центра масс системы (практически от центра Солнца), а от орбиты ничтожного по своей массе Меркурия. И построение этой простейшей прогрессии завершается ничтожным по своей массе Плутоном. Иначе говоря, положение орбит определяется не реальными каузальными связями, а подчинено примату целевых нематериальных отношений, природа которых пока неясна, что соответствует первому пункту определения финальности и финализма.

Почему в прогрессию включен радиус пояса астероидов?

Согласно современным представлениям, главный пояс астероидов ассоциируется с планетой, которая так и не смогла сформироваться ввиду гравитационного влияния Юпитера и других планет-гигантов. И средний радиус пояса астероидов в точности соответствует тому значению, которое дает формула Тициуса-Боде.

Чем объяснить выпадение Нептуна?

Это самый неудобный вопрос. Можно предложить такую аналогию. В метрологии есть понятие промаха измерений – такого измерения, результат которого выходит далеко за пределы области других измерений. Проводя параллель, имеем "девять корректных измерений" и один "промах". Промахи, как известно, из результатов исключаются и во внимание не принимаются.

Почему расстояния от орбит планет до отметки маркирующей начало планетной системы образуют ряд столь мало отличающийся от прогрессии? Однозначного ответа нет. Но похоже, что прогрессия со знаменателе 2 (или ½) – это визитная карточка "Высшего разума". Действительно, в нашей телеологической гипотезе – это прогрессия с тем же знаменателем, содержащая в два раза большее число членов. А от начала неолита до второй половины ХХ века на восемь периодов, каждый последующий из которых в два раза короче предыдущего, в точности соответствует правилу по которому размечена планетарная зона Солнечной системы на восемь зон, ограниченных орбитами планет от Плутона до Меркурия (Нептун выпадает).

Орбиты всех крупных планет Солнечной системы имеют аномально малые (по сравнению с экзосолнечными планетами) эксцентриситеты орбит. Это обстоятельство может рассматриваться, как редкая случайность (до недавнего времени оно вообще никого не смущало, поскольку никто не предполагал, что типичной является как раз ситуация с высокой степенью эллиптичности орбит). Кроме того особенностью многих спутников планет Солнечной системы являются идеальные круговые орбиты и совпадение плоскости орбиты спутника с плоскостью экватора планеты. Такие закономерности, выглядящие маловероятными, могут иметь своей причиной разумный замысел (Intelligent design).

Значения наклонов осей вращения планет к плоскостям орбит

Ниже приведены значения наклонов осей вращения крупных планет (от Меркурия до Плутона) к плоскостям их орбит, выраженные в градусах, в долях от прямого угла и округленно:

Планета М В З М Ю С У Н П
Угол в ° 89.9 -86.6 66.5 65.5 87.0 63.5 -8.0 61.0 -8.0
× 90 ° 0.99 - 0.96 0.74 0.73 0.97 0.71 - 0.09 0.68 - 0.09
1 -1 0.7 0.7 1 0.7 -0.1 0.7 -0.1

Таблица 2. Значения наклонов осей вращения планет (от Меркурия до Плутона)

к плоскостям их орбит.

Учитывая, что набор значений для наклонов планетных осей мог бы содержать, строго говоря, любые величины (базовая теория утверждает, что наклоны осей отличаются от прямого благодаря соударениям планетезималей на ранней стадии формирования Солнечной системы), можно заметить, что упомянутая последовательность выглядит достаточно маловероятной. Такую последовательность значений можно рассматривать, как искусственно созданную, и даже несущую в себе либо какой-то смысл, либо какую-то функциональную нагрузку.

Следовательно, как и в случаю с прогрессией Тициуса-Боде, здесь мы имеем простую последовательность, возникновение которой вряд ли можно объяснить лишь естественными причинами. Все это очень напоминает правила квантования энергии и собственного момента импульса электрона в атоме. И все это снова говорит нам о финальности в устройстве Солнечной системы.

Резонансным соотношением в небесной механике называется соотношение (1), где ω 1 , ω 2 ,...,ω к – частоты обращения (или средние угловые скорости) соответствующих планет вокруг Солнца (или спутников планеты вокруг нее, или планет (спутников) вокруг своей оси); n 1 , n 2 , n к – целые числа (положительные или отрицательные).

n 1 ω 1 +n 2 ω 2 +...+n к ω к = 0 (1)

Солнечная система не атом водорода, а планеты не электроны. Никакие физические законы не препятствуют им обращаться с любым несоизмеримым периодом друг относительно друга. Но почему-то очень часто небесные тела связаны резонансами. При орбитальном резонансе два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие целые числа, при спин-орбитальном резонансе синхронизируются орбитальное движение небесного тела и его вращение вокруг своей оси. Иначе говоря резонанс для астрономов – это соизмеримость (или почти соизмеримость) времён обращения небесных тел, т.е. когда периоды относятся как небольшие целые числа, чаще всего 1:1, 1:2, 1:3, 2:3, 2:5. Известно, например, что орбита Урана обладает резонансом 1:3 относительно Сатурна, орбита Нептуна – резонансом 1:2 относительно Урана, орбита Плутона – резонансом 1:3 относительно Нептуна. Орбита Сатурна проявляет резонанс 2:5 относительно Юпитера, о чем знал еще Лаплас.

А.М. Молчанов выдвинул гипотезу о существовании резонансной структуры (полной резонансности) Солнечной системы. По его мнению, эволюционно зрелые колебательные системы неизбежно резонансны, и их состояние определяется (подобно квантовым системам) набором целых чисел. Резонансность орбит по мнению Молчанова обеспечивается малыми диссипативными силами: приливными, тормозящими от межзвездной пылевой материи и др. Эти диссипативные силы очень малы, на порядки меньше слабых возмущений за счет взаимодействий планет. Но действуя миллиарды лет, они (гипотетически) приводят движения планет к стационарным резонансным орбитам. Молчанову удалось найти для планет Солнечной системы полную систему резонансов. Она представлена ниже таблицей 3. Таблица содержит числа n к положительные, отрицательные и нули, такие что:

n 1 ω 1 + n 2 ω 2 + ... + n 9 ω 9 = 0

Таблица 3. Резонансы планет Солнечной системы.

Возьмем например пятую строку:

2ω Юп - 5 ω Сат = 0

Все эти резонансы приближенные, но выполняются с хорошей точностью порядка 1%: таблица 4. Т.к. частоты вращения планет ω к связаны между собой рациональными числами, то всегда можно подобрать достаточно большие по модулю целые числа n к, определяющие резонанс высокого порядка с любой заданной наперед точностью. Но суть открытия Молчанова в том, что числа n к в таблице 3 – малы (см. график 1). Аналогичные таблицы существуют и для систем спутников Юпитера, Сатурна и Урана. Отклонения истинных частот от резонансных не превосходят здесь 1,5%.

Таблица 4. Отклонение фактических частот вращения планет от "теоретических".

Гипотеза Молчанова должна описываться теорией многочастотных нелинейных колебательных систем, причем Солнечная система выступает здесь лишь как объект иллюстрации эволюции таких систем. Молчанов оценил вероятность наблюдаемого состояния Солнечной системы при таком подходе, как 3*10 -12 . Это означает, что планетная система, подобная Солнечной, при случайном образовании, могла бы встретиться один раз среди десяти галактик подобных нашей, при условии что у каждой звезды в галактике есть своя планетная система. Этот результат противоречит принципу Коперника, Космологическому принципу и принципу " ∞ ". Очевидно, что наблюдаемое состояние Солнечной системы, необъяснимо с точки зрения классической механики.

К тому же гипотеза Молчанова рождает новые вопросы, на которые также нет ответа. Однозначна ли система небольших резонансных чисел, найденных Молчановым, или можно подобрать другую не хуже? Почему Солнечная система пришла именно к этим резонансам, а не к каким-то другим? Каков механизм перехода системы в резонансный режим? Прошло уже около полувека с тех пор как А.М. Молчанов предложил свою гипотезу, но все эти вопросы так и остались без ответа.

Поскольку эти резонансные соотношения, очевидно, не могли возникнуть по случайным причинам, то финалистская гипотеза имеет такое же право на существование как и всякая другая:

"Результаты Джойса, по-видимому, свидетельствуют о существовании резонанса (или системы резонансов) между внутрисолнечными процессами и циклическими движениями планет. Но это ещё не всё. Правдоподобно, что влияние этого резонанса резко усилено благодаря наличию совокупности резонансов в самой планетной системе. Происхождение этих резонансов и особенно их влияние на динамические процессы, протекающие в Солнечной системе, не всегда ясны. Их наличие может привести к высокой чувствительности соответствующих систем к внешним воздействиям и возмущениям определенного информационного типа, т.е. имеющим подходящий (и устойчивый) спектр частот".

В Солнечной системе синхронизация выражается также в существовании замечательно простых целочисленных зависимостей между средними угловыми скоростями обращений (орбитальных движений) и вращений планет (спин-орбитальная синхронизация). Существует целый ряд таких зависимостей. Вот только некоторые из них:

Движение Меркурия согласовано с движением Земли. Время от времени Меркурий находится с Землей в нижнем соединении. Так называют такое приближение Меркурия, когда он находится с Землей и Солнцем на одной прямой. Нижнее соединение повторяется каждые 116 суток, что совпадает с временем двух полных оборотов Меркурия и, встречаясь с Землей, Меркурий всегда обращен к ней одной и той же стороной. Но какая же сила заставляет Меркурий равняться не на Солнце, а на Землю. Или это случайность?

"Механизм возникновения этого резонанса остается неизвестным, а попытки объяснить его приливными возмущениями в масконе, находящемся под поверхностью Моря зноя или в приливном горбе, представляются не очень убедительными. Силы приливных взаимодействий пропорциональны обратному кубу, а не обратному квадрату, как в законе всемирного тяготения; они быстро убывают с расстоянием, и поэтому приливные воздействия Земли на Меркурий в 1,6·10 6 раз меньше, чем от Солнца, и в 5,2 раза меньше, чем от Венеры. Но других объяснений пока нет".

Период вращения Меркурия вокруг своей оси равен 58,65 сут, т.е. практически точно равен двум синодическим лунным месяцам. Период обращения Меркурия вокруг Солнца - 88 сут. по отношению к неподвижным звёздам, т.е. близко к трем синодическим лунным месяцам (88,6 сут.). Орбита Меркурия находится в резонансе 115.88 земных суток относительно Земли, что близко к 4 синодическим лунным месяцам, 118 суток. Точный резонанс был 130 млн. лет назад. Удивительные совпадения! Прямая связь между движениями Луны и Меркурия представляется невероятной, точнее, пренебрежимо малой.


Еще больше странностей в движении Венеры. Период вращения Венеры (243.02) практически совпадает с резонансным периодом системы Земля-Венера (243.16). Период повторения нижних соединений с Землей – 584 суток, это ровно 5 солнечных суток Венеры (116.8 земных суток), причем в эти моменты Венера всегда обращена к Земле одной и той же стороной. Этот странный взгляд, глаза в глаза, не может быть объяснен с точки зрения классической небесной механики». (М.Карпенко. "Вселенная разумная"; "Известия", 24 июля 2002 года).

Синхронно вращаются вокруг своих планет (резонанс 1:1 – постоянно обращены к ним одной стороной) спутники Земли, Марса, Сатурна (кроме Гипериона, Фебы и Имира), Урана, Нептуна (кроме Нереиды) и Плутона. В системе Юпитера такое вращение характерно для значительной части спутников, в том числе всех галилеевых. Первым попытался обосновать резонансы в Солнечной системе, Лаплас. Он объяснял резонансность спутников Юпитера приливными взаимодействиями.

Такое объяснение вполне подходит, но при условии, что вращения спутников уже были почти резонансными, а приливы лишь довели их до точного устойчивого резонанса. Но почему изначально существовал приближённый резонанс, теория приливов ответа не дает. В планетной же системе, приливные эффекты заведомо слабы и поэтому орбитальные планетные резонансы теория приливов вообще не объясняет. Нельзя же, например, всерьёз утверждать, что крошечный Плутон, отстоящий как минимум на 30 а.е. от Солнца, нагоняет на его поверхности мощную приливную волну! Вывод таков: орбитальные резонансы и резонансы вращений, одной лишь теорией приливов объяснить невозможно.

Каков же итог? Геометрия Солнечной системы, т.е. положение планетных орбит в пространстве, их независимость от массы планет, малые эксцентриситеты планетных и спутниковых орбит, "квантование" углов собственных моментов планет, синхронность их циклических орбитальных движений и вращений, циклическая активность Солнца – все эти факты и явления не нашли (несмотря на многочисленные попытки) своего естественного объяснения. И это несмотря на их исключительную простоту.

При этом нужно учесть, что возраст Солнечной системы – миллиарды лет, и все ее параметры: геометрические, частотные и фазовые в течение всего этого огромного промежутка времени под действием диссипативных сил и гравитационных взаимодействий, медленно менялись. В таком случае, абсолютная точность всех приведенных выше зависимостей не достижима в принципе ни в какие времена. И то, что именно в наше время, они выполняются с очень хорошей точностью и Солнечная система становится "эволюционно зрелой", свидетельствует о финальности в ее устройстве и присутствии неких разумных сил в процессе ее формирования.

Остается правда нерешенным вопрос о природе этих разумных сил. Ответ на него существует и вполне логичный, причем без привлечения "Предтеч", цивилизаций на миллионы лет опередивших нас в своем развитии. Разные ученые, в разные времена, по разному называли ту разумную силу, субстанцию, которая движет эволюцией. На эту роль могли бы претендовать и энтелехия Аристотеля, и монады Лейбница, и морфогенетические поля Руперта Шелдрейка, и информационные поля академика Влаиля Казначеева. В наше время в качестве такой субстанции логично выбрать так называемую темную материю, в существовании которой, в отличие от всех вышеперечисленных, сомневаться не приходится. Темная материя распространена в космосе повсеместно, присутствует она также и в Солнечной системе, причем масса ее в пять раз превышает массу обычной видимой материи.

Что такое темная материя? Из каких частиц она состоит? Какой мир (миры) она образует? Все это остается неизвестным. Единственное, что про нее доподлинно известно, так это то, что она может неравномерно распределяться в пространстве и вступать в гравитационное взаимодействие с обычным веществом. Но уже и этого достаточно, для того чтобы объяснить финальность в устройстве нашей планетной системы. Действительно, если отождествить ее с разумным проектировщиком и строителем, можно предположить следующее. Темная материя могла в системе Протосолнца с помощью небольших гравитационных возмущений постепенно, шаг за шагом формировать нужные по массе и составу планеты (спутники), расставлять (а возможно в дальнейшем и перемещать) их на нужные орбиты, обеспечивать правильность этих орбит и синхронность циклического движения по ним.

Можно ли объяснить финальность в устройстве Солнечной системы с помощью темной материи? На этот вопрос пока ответа нет. Но то, что она повлияла на процесс образование галактик , подтверждается компьютерным моделированием, которое провели английские астрофизики. Эти расчеты показали, что ключевую роль в определении формы звездного скопления (спиральная или эллиптическая галактика), играет именно гало темной материи. Если бы темной материи не существовало, то, как считают ученые, реально наблюдаемые структуры в расширяющейся Вселенной просто не успели бы возникнуть. Без небарионной холодной материи невозможно было бы само существование Вселенной в современном ее виде, а значит, и формирование Солнечной системы и планеты Земля.

Кроме того, та же разумная сила могла подогнать и столкнуть под нужным углом Тейю с молодой Землей, что привело к образованию Луны, жизнь без которой на Земле оказалась бы невозможной. Она же была способна 65 млн. лет назад направить на Землю "нужный" по массе и скорости астероид, и положить конец господству динозавров, оказавшихся тупиковой ветвью эволюции. (Что в соответствии с астероидной гипотезой, привело к взлету млекопитающих, а затем к появлению приматов, гоминид и человека.) И если в соответствии с принципом Оккама не плодить лишних сущностей, ею же можно объяснить ускоряющуюся универсальную эволюцию: биологическую ее фазу, антропогенез и социогенез. (Расхождение в подсчетах массы Земли привели ученых к предположению о том, что нашу планету окружает пояс темной материи .) Правда материальная движущая сила всех этих эволюций, в отличие от планетарной эволюции, остается неизвестной.

В заключение, отметим следующее. Финальность в устройстве Солнечной системы, не означает ее выделенности, уникальности в Галактике и Вселенной, как это обычно принято считать. Многие открытые на данный момент экзопланетные системы отличаются от Солнечной системы тем, что в них газовые гиганты, аналогичные Юпитеру располагаются на близких расстояниях от звезды. Что объясняется селективностью методов обнаружения (легче обнаружить короткопериодические, близко отстоящие от звезды массивные экзопланеты). Если же исходить из принципа Коперника и Космологического принципа , то можно не сомневаться в том, что, существуют также и системы аналогичные Солнечной, пока недоступные для наблюдения.

Не нужно также забывать, что звезды солнечного типа (типа G), такие как Солнце, составляют всего лишь 5% от звёзд нашей Галактики, основная же масса звезд – это красные карлики, которые составляют 80% звездного населения, и на планетах которых, также возможно зарождение жизни. И темная материя каждой такой протопланетной системы, ее "Космический проектировщик и строитель", могла настраивать ее характеристики так, чтобы в ней оказалось возможным возникновение жизни, сознания и цивилизации с последующей ее экспансией в космическое пространство.

tattooe.ru - Журнал современной молодежи