Формула механической характеристики двигателя постоянного тока. Рабочие характеристики

Рабочие характеристики ДПТ параллельного возбуждения малой мощности приведены на рис. 5.8.

Рабочие характеристики двигателя представляют собой зависимости скорости вращения n, потребляемого тока I и мощности P 1 , момента на валу двигателя M, коэффициента полезного действия η от полезной мощности P 2 при неизменном значении напряжения питания U н = const, тока обмотки возбуждения I вн =const и отсутствии добавочного сопротивления в якорной цепи R д я = 0. Они дают возможность судить об эксплуатационных свойствах двигателей и определять наиболее экономичные их режимы работы в условиях производства.

Механическая характеристика двигателя постоянного тока

Механическими характеристиками двигателя называются зависимости установившейся частоты вращения от момента на валу двигателя – n=f 1 (M) или ω=f 2 (M).

Характеристики называют естественными, если они получены при номинальных условиях питания (при номинальном напряжении), номинальном возбуждении и отсутствии добавочных сопротивлений в цепи якоря.

Характеристики двигателя называются искусственными при изменении любого из перечисленных выше факторов.

Подставим в уравнение

,выражения для определения тока и ЭДС ДПТ

Е я = С Е nФ,


Механическая характеристика двигателя постоянного тока с независимым и параллельным возбуждением имеет вид:


,

где R яц = R я + R доб – полное сопротивление цепи якоря, Ом;

R Я – сопротивление обмотки якоря, Ом;

R доб – добавочное сопротивление в цепи якоря, Ом.

Анализируя выражение для построения механической характеристики, видим, что математически это уравнения прямой линии, пересекающей ось скоростей в точке n 0 , где

n 0 = U/(

·Ф) – скорость холостого хода.

Естественная механическая характеристика показана на рис. 5.9.

Для построения естественной механической характеристики (ЕМХ) необходимо найти две точки.

Одна из них определяется из паспортных данных двигателя для номинальных значений n н и М н:

М н = P н /ω н, ω н = π·n н /30 = 0,105·n н,

где P н – номинальная мощность двигателя, Вт;

ω н – номинальная частота вращения, рад/сек.

Вторая точка соответствует идеальному холостому ходу, когда I = 0 и М=0.

Скорость холостого хода можно найти из следующего уравнения при подстановке паспортных данных двигателя:


.

Регулирование скорости вращения дпт

Существует три основных способа регулирования частоты вращения машин постоянного тока: реостатное регулирование, регулирование изменением магнитного потока, регулирование изменением напряжения сети.

Реостатное регулирование частоты вращения осуществляется путем введения в цепь якоря дополнительных активных сопротивлений – резисторов, т.е. R яц = (R я + R доб) = var при U = U н, Ф = Ф н. Как видно из уравнения механической характеристики

при изменении величины добавочного сопротивления R доб в цепи якоря скорость идеального холостого хода n 0 остается постоянной изменяется лишь жесткость характеристики.

Искусственные механические характеристики (ИМХ) при введении добавочного сопротивления в цепь ротора двигателя постоянного тока независимого возбуждения показаны на рис. 5.10.

Регулирование частоты вращения при изменении магнитного потока осуществляется преимущественно за счет ослабления магнитного потока Ф возбуждения двигателя, т.е. за счет уменьшения тока возбуждения i в.

При уменьшении магнитного потока обычно соблюдаются условия: U = U н; R дя = 0. В этом случае для скорости идеального холостого хода имеем


, тогда

,

где

- скорость холостого хода для искусственной механической характеристики;


- скорость холостого хода для естественной механической характеристики.

Искусственные механические характеристики при уменьшении магнитного потока представлены на рис. 5.11.

Для регулирования частоты вращения двигателя постоянного токанезависимого возбуждения изменением питающего напряжения необходимы регулируемые источники напряжения.

Из уравнения механической характеристики видно, что с регулированием напряжения связано изменение скорости идеального холостого хода n 0 = U н /(

·Ф н) при сохранении жесткости характеристик. Это позволяет существенно расширить диапазон регулирования. Регулирование частоты вращения идет, как правило, вниз от основной характеристики.Искусственные характеристики при изменении (уменьшении) напряжения будут иметь вид прямых. Механические характеристики двигателя постоянного тока независимого возбуждения при изменении напряжения питания показаны на рис. 5. 12.

В зависимости от способа соединения обмотки якоря и обмотки возбуждения различают двигатели параллельного, последовательного и смешанного возбуждения.

Двигатель параллельного возбуждения. До включения рубильника Р (рис. 157) необходимо поставить сопротивление пускового реостата R2 на максимум и сопротивление регулировочного реостата R1 на нуль. После включения в сеть якорь двигателя начнет вращаться, и по мере увеличения частоты вращения сопротивление пускового реостата постепенно уменьшают.

Рабочие характеристики двигателя (рис. 158, а) выражают зависимость частоты вращения п, вращающего момента М, тока 1 и к. п. д. т] от развиваемой двигателем полезной мощности Р 2 при неизменном напряжении сети. Частота вращения якоря двигателя п = (U - - - 1 Я г я)/(СФ).

При постоянном напряжении U ток возбуждения двигателя не меняется, но магнитный поток с увеличением нагрузки немного уменьшается из-за реакции якоря. С другой стороны, с увеличением нагрузки возрастает ток 1 я и внутреннее падение напряжения U я = 1 я г я. Уменьшение магнитного потока увеличивает частоту вращения якоря, а увеличение падения напряжения в обмотке якоря уменьшает ее. У двигателя параллельного возбуждения преобладает последняя причина, поэтому частота его вращения с увеличением нагрузки от нуля до номинальной уменьшается на 5-10%.

Полезная мощность, развиваемая двигателем, Р2=М2пп/60, тогда вращающий момент М = 30Р2І (пп).

При постоянной частоте вращения двигателя п вращающий момент М был бы прямо пропорционален мощности Р 2 и зависимость M=f(P 2) имела бы вид прямой, проходящей через начало координат. В действительности частота вращения двигателя с увеличе нием нагрузки немного снижается и машина имеет момент холостого хода М 0 . Следовательно, кривая M=f(P 2) отклоняется от прямой вверх и начинается с ординаты М 0 . Увеличение тока практически пропорционально полезной мощности двигателя Р 2 . С увеличением нагрузки к.п.д. двигателя быстро растет и достигает предельного значения 0,8-0,9 при нагрузке, близкой к PJ2, оставаясь в дальнейшем почти постоянным. Чтобы с увеличением нагрузки частота вращения двигателя была постоянной, следует уменьшить магнитный поток двигателя, уменьшая ток возбуждения регулировочным реостатом.

Регулировочная характеристика выражает зависимость тока возбуждения 1 в от тока якоря 1 я (рис. 158, б) при постоянном напряжении U и частоте вращения п, т. е. 1 в 1 (/ я) при U - const и п ¦ - const. Эта характеристика показывает, как следует регулировать ток возбуждения, чтобы при различных нагрузках частота вращения двигателя оставалась неизменной.

Электродвигатели параллельного возбуждения применяют в тех случаях, когда при переменной нагрузке требуется, чтобы частота вращения оставалась постоянной и была возможность ее плавной регулировки. Электродвигатель параллельного возбуждения типа СЛ-571К применяют в автоматических шлагбаумах, ограждающих железнодорожные переезды со стороны автомобильных дорог. Такой двигатель имеет номинальную мощность 95 Вт при напряжении 24 В и токе 7 А, частота вращения якоря двигателя 2200 об/мин.

Двигатель последовательного возбуждения (рис. 159). Обмотка возбуждения OB, обмотка якоря Я и пусковой реостат R соединены последовательно. Запуск двигателя последовательного возбуждения следует осуществлять с нагрузкой, которая должна быть не менее 20-25% номинальной вследствие того, что ток возбуждения 1 в равен току якоря 1 я. При холостом ходе или малых нагрузках потребляемый ток небольшой, следовательно, незначителен и магнитный по ток Ф, а частота вращения двигателя п - U - 1 я (г я + г ъ)/(СФ) достигает опасного значения. Во избежание разноса при внезапной разгрузке для этих двигателей применяют зубчатую передачу или непосредственное соединение вала двигателя с рабочим механизмом.

Рабочие характеристики двигателя последовательного возбуждения (рис. 159, б) имеют две особенности при увеличении нагрузки: резко снижается частота вращения п - U - 1 я (г я 4 1^/(СФ); и резко увеличивается вращающий момент М = С М / Я Ф = С м / я С м1 / я = = С м2 /1, где С ы1 - коэффициент пропорциональности магнитного потока и тока до насыщения стали, а постоянный коэффициент С м2 =

Свойства двигателей последовательного возбуждения развивать большие вращающие моменты, приблизительно пропорциональные квадрату тока при малых частотах вращения якоря и, наоборот, малые вращающие моменты при больших частотах вращения обусловливают их применение в подъемных механизмах, электровозах и тепловозах. Частоту вращения двигателя последовательного возбуждения обычно регулируют реостатом, включенным параллельно обмотке возбуждения.

Двигатели последовательного возбуждения типа МСП устанавливают в стрелочных электроприводах, предназначенных для дистанционного управления стрелками при электрической, диспетчерской и горочной централизации. Электрические характеристики этих двигателей приведены в табл. 10.

Электродвигатели типа МСП - двигатели закрытого типа, двухполюсные реверсивные, работают в повторно-кратковременном режиме. Для реверсирования имеют две обмотки возбуждения OBI и ОВ2 (рис. 160). При включении первой обмотки якорь двигателя вращается в прямом направлении, а при включении второй обмотки - в обратном. Электродвигатели типа МСП-0,1 устанавливают в электроприводах, предназначенных для перевода стрелок легких типов. В новых разработках эти двигатели не применяют. Электродвигатели типов



Тип электродвигателя

Номинальная мощность,

Номинальное напряжение,

Потребляв-мый ток не более, А

Номинальная частота враще-ння, об/мин

К. п. д. не менее

МСП"0,15 и МСП-0,25 предназначены для электроприводов тяжелых типов и на сортировочных горках.

Двигатель смешанного возбуждения (рис. 161). Он имеет две обмотки возбуждения: параллельную ОВШ и последовательную ОВС. Обмотки возбуждения, расположенные на одних полюсах, имеют токи одного или разных направлений.

В первом варианте машин такого типа магнитный поток полюсов

Ф - Ф овс -+-Ф 0ВШ. а частота вращения п = .

Машины такого типа обладают свойствами двигателей последовательного возбуждения, но благодаря постоянному магнитному потоку параллельной обмотки возбуждения они не подвергаются опасности разноса при малых нагрузках и холостом ходе, когда незначителен магнитный поток Ф овс.

Во втором варианте обмотки соединены встречно и поток полюсов Ф = Ф овш - Ф овс, а частота вращения п =

Двигатели такого типа обладают постоянной частотой вращения, так как при увеличении нагрузки усиливающийся магнитный поток вспомогательной последовательной обмотки немного размагничивает



машину и компенсирует действие внутреннего падения напряжения

Iя (Г я " ^ пас)

Потери и коэффициент полезного действия машин постоянного тока. Энергия, подводимая к электрической машине, не полностью превращается в полезную: часть энергии теряется в самой машине, превращаясь в тепло. Чем больше энергии теряется в машине, тем больше нагрев отдельных ее частей и ниже коэффициент полезного действия.

Различают следующие виды потерь.

Потери в меди Р м возникают в результате прохождения тока по обмоткам машины. Мощность потерь в меди определяют по закону Джоуля - Ленца:

где I - ток, проходящий по обмотке машины;

г - сопротивление обмотки.

Для снижения этих потерь уменьшают сопротивление тех обмоток машины, по которым проходит ток большого значения, к которым относятся обмотка якоря, последовательная обмотка возбуждения, обмотка дополнительных полюсов. Для уменьшения тока, потребляемого параллельной обмоткой возбуждения, ее сопротивление увеличивают (выполняют проводом с малым поперечным сечением с большим числом витков).

Потери в стали Р ст возникают в результате перемагничивания якоря машины (потери на гистерезис) и появления в нем вихревых токов. Для уменьшения этих потерь якорь набирают из тонких листов мягкой стали.

Потери на трение Р тр складываются из потерь от трения в подшипниках, трения щеток о коллектор и трения вращающихся частей о воздух. В современных машинах применяют шариковые или роликовые подшипники, в которых потери на трение составляют не более 10% потерь в подшипниках скольжения.

Коэффициент полезного действия представляет собой отношение полезной МОЩНОСТИ Р 2 К ПОДВОДИМОЙ Р и Т. е. Т] = - Р 2)Р\ ИЛИ Т] - - (Р 2 /Р г)100%. Полезная мощность генератора Р 2 = VI, где V - напряжение на зажимах генератора; 1 - ток, отдаваемый им в сеть.

Следовательно, его к. п. д. т] (Р 2 /Р 1)100% = [Р 2 /(Р а ¦{- Р м -р ч р ст Р тр)]Ю0%.

Электрическая мощность двигателя Р г = VI, где V - подводимое напряжение; 1 - ток, потребляемый двигателем.

В этом случае ц =- (Р 2 /Р 1)100% = Г(Р 1 - Р м - Р ст - Р)[ 1Р г ] 100%.

На рис. 159, б представлены кривые зависимости к. п. д. машин постоянного тока от нагрузки. Максимум к. п. д. (75-90%) соответствует нагрузке, равной 75-100% номинальной мощности машины. К. п. д. стрелочных электродвигателей 65-75%.

Двигатель постоянного тока - электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию. Простейший двигатель, состоит из статора, ротора и щёточноколлекторного узла. Рис.1а

Рис.1а

На статоре ДПТ располагаются электромагниты с обмотками возбуждения - катушки, наводящие магнитный поток возбуждения

Ротор состоит из электромагнитов с переключаемой полярностью и датчика положения ротора и переключателя (коллектора).

Выводы всех катушек ротора объединяются в коллекторный узел. Коллекторный узел обычно представляет собой кольцо из изолированных друг от друга пластин-контактов (ламелей), расположенных вдоль оси ротора. Коллектор (щёточно-коллекторный узел) выполняет одновременно две функции - является датчиком углового положения ротора и переключателем тока со скользящими контактами. Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка - неподвижный контакт (обычно графитовый или медно-графитовый). Машины постоянного тока в основном делают многополюсными, при этом в каждой секции обмотки за один оборот значение и знак ЭДС изменяются столько раз, сколько полюсов. Магнитная цепь такой машины более сложная, при этом число пар щеток равно числу пар полюсов, а щетки одинаковой полярности соединяют вместе.

Двигатели постоянного тока обычно классифицируются

По способу включения обмоток возбуждения электромагнитов статора относительно обмотки ротора. Рис.1б. Последовательное возбуждение – обмотки статора включены последовательно с обмоткой ротора. Параллельное возбуждение - обмотки статора включены параллельно обмотке ротора. Смешанное возбуждение – когда обмотки возбуждения делятся на две части, одна включается последовательно, другая параллельно обмотке ротора. Независимое возбуждение – обмотки статора питаются от отдельного источника постоянного тока- возбудителя. Вид подключения обмоток возбуждения существенно влияет на тяговые и электрические характеристики электродвигателя.

Характеристики ДПТ

Механическая характеристика ДПТ представляет собой зависимость частоты вращения ротора двигателя от момента на валу ДПТ. Отображается в виде графика. Горизонтальная ось (абсцисс) - момент на валу ротора, вертикальная ось (ординат) - частота вращения ротора. Механическая характеристика ДПТ есть линия, идущая с отрицательным наклоном.

Механическая характеристика ДПТ строится при определённом напряжении питания обмоток ротора. В случае построения характеристик для нескольких значений напряжения питания говорят о семействе механических характеристик ДПТ.

Регулировочная характеристика ДПТ представляет собой зависимость частоты вращения ротора от напряжения питания обмоток ротора ДПТ. Отображается в виде графика. Горизонтальная ось (абцисс) - напряжение питания обмоток ротора, вертикальная ось (ординат) - частота вращения ротора. Регулировочная характеристика ДПТ есть линия, идущая с положительным наклоном.

Регулировочная характеристика ДПТ строится при определённом моменте, развиваемом двигателем. В случае построения регулировочных характеристик для нескольких значений момента на валу ротора говорят о семействе регулировочных характеристик ДПТ.

Управление ДПТ. Управление двигателем осуществляется по току в обмотке ротора двигателя, который пропорционален напряжению, приложенному к этой обмотке. Реакцию двигателя на данное напряжение при определённом внешнем моменте можно увидеть на соответствующей регулировочной характеристике. Регулировочная характеристика показывает скорость, которую двигатель достигнет в установившемся режиме. Основные формулы, используемые при управлении ДПТ:

M = k m I - момент, развиваемый двигателем, пропорционален току в обмотке якоря (ротора). k m - коэффициент момента двигателя.

E = k e ω - противоЭДС в обмотках якоря пропорционально угловой частоте вращения ротора. k e - коэффициент ЭДС двигателя.

U = RI - закон Ома для обмотки ротора. R - сопротивление обмотки ротора, I - ток в ней и U - напряжение, подаваемое на обмотку ротора.

Регулированием скорости называется целенаправленное принудительное изменение скорости двигателя посредством специального устройства или приспособления, независимо от величины и характера нагрузки, в соответствии с требованиями, предъявляемыми к закону движения рабочего органа механизма. Установленная при регулировании скорость при отсутствии воздействия на регулирующее приспособление в дальнейшем изменяется по механической характеристике электропривода в соответствии с нагрузкой. Регулирование скорости позволяет наиболее рационально использовать производственные механизмы, обеспечить оптимальные режимы их работы и, как правило, уменьшить расход энергии. Выражение скорости вращения двигателя постоянного тока:

показывает, что возможны три принципиально различных способа регулирования угловой скорости двигателя:

1) изменением тока возбуждения (магнитного потока) двигателя;

2) изменением сопротивления цепи якоря посредством резисторов (реостатное);

3) изменением подводимого к якорю двигателя напряжения.

В настоящее время в регулируемых по скорости или моменту электроприводах широко используются машины постоянного тока. Они изготавливаются мощностью от долей ватта до 12 МВт. Номинальное напряжение их не превышает 1500 В и только иногда в крупных машинах доходит до 3000 В. Частота вращения колеблется в широких пределах - от нескольких оборотов до нескольких тысяч оборотов в минуту.

Наиболее широко применяются машины постоянного тока с механическим коммутатором - коллектором. Хотя он усложняет условия работы, однако правильно спроектированная и качественно изготовленная машина постоянного тока является достаточно надежной. Машины постоянного тока, как и все электрические машины, обратимы, т. е. могут работать и как генераторы, и как двигатели. Конструктивно они выполнены одинаково. Однако с целью получения более экономичных режимов работы генераторы и электродвигатели проектируются и изготавливаются отдельно. В частности, они изготавливаются на разные напряжения: генераторы - на 115, 230, 460 В, двигатели - на 110, 220, 440 В.

Генераторы постоянного тока применяются в качестве возбудителей синхронных машин, сварочных генераторов, для питания гальванических ванн и двигателей постоянного тока, зарядки аккумуляторов.

Электродвигатели постоянного тока используются для электрической тяги, в подъемно-крановых установках, металлургической, бумажной промышленности и других отраслях, где требуется плавное и точное регулирование скорости и вращающего момента в широких пределах.

Электродвигатели постоянного тока. Технические характеристики

Основной серией машин постоянного тока общего назначения, изготавливаемых в СНГ, является серия 2П. Она охватывает диапазон мощностей от 0,37 до 200 кВт при высоте осей вращения 90 - 315 мм. Электродвигатели этой серии предназначены для широкорегулируемых электроприводов. Они заменяют машины серии П, а также специализированные машины серий ПС (Т), ПБС (Т), ПР. Приведем структуру условного обозначения машины постоянного тока серии 2П:
2П/1 Х/2 Х/3 Х/4 Х/5 Х/6,

где 1 - название серии (2П); 2 - исполнение по способу защиты и вентиляции: Ф - защищенное исполнение с независимой вентиляцией от постороннего вентилятора, Б - закрытое исполнение с естественным охлаждением, О - закрытое исполнение с внешним обдувом от вентилятора; 3 - высота осей вращения, мм; 4 - условное обозначение длины сердечника якоря: М - средняя, L - большая; 5 - буква F при наличии встроенного тахогенератора (при отсутствии тахогенератора буква Г не ставится); 6 - климатическое исполнение и категория размещения.

Электродвигатели серии 2П изготавливаются с полным числом добавочных полюсов. При этом двигатели с высотой оси вращения 90 и 100 мм - двухполюсные, 112 мм - четырехполюсные.

Двигатели типов 2ПН, 2ПФ обладают степенью защиты IP22, а типов 2ПБ и 2ПО - IP44. Двигатели со степенью защиты IP22 имеют центробежный реверсивный вентилятор, насаженный на вал якоря со стороны, противоположной коллектору.
Двигатели со степенью защиты IP44 имеют внешний центробежный вентилятор, который насажен на конец вала, противоположный приводу, и закрыт штампованным или сваренным кожухом из листовой стали толщиной 1-2 мм. Внутри таких двигателей со стороны, противоположной коллектору, размещается вентилятор-мешалка.

Для привода вентилятора в двигателях типа 2ПФ и 2ПО используется асинхронный двигатель типа 4АА56А4УЗ с синхронной частотой вращения 1500 об/мин.
В двигателях с высотой оси вращения 90 - 200 мм станина изготовлена из отрезков цельнотянутых труб, а с высотой оси вращения 225 -315 мм станины сварные, из толстолистового проката.

Соединение двигателей серии 2П с приводом осуществляется эластичной, зубчатой или клиноременной передачей. Рабочий конец вала - со стороны, противоположной коллектору.

Двигатели изготавливаются с независимым возбуждением. Напряжение возбуждения 110 или 220 В независимо от номинального напряжения якоря.
Режим работы машины серии 2П продолжительный (S1), средний срок службы 12 лет, средний ресурс 30000 ч.

Двигатели типа 2П...Г изготавливаются с тахогенератором типа ТС1, который имеет закрытое встроенное исполнение. Возбуждение тахогенератора от постоянных магнитов.

Номинальное напряжение якорной цепи машины серии 2П составляет 110, 220, 240 и 660В.

Машины новой серии 4П по сравнению с серией 2П характеризуются улучшенными массогабаритными показателями. Все машины этой серии имеют распределенную компенсационную обмотку, а магнитопроводы (сердечники) статора и якоря шихтованные.

В ряде машин серии 4П (например, типов 4ПО, 4ПБ) статоры изготовлены по типу статоров асинхронных двигателей и не имеют явных полюсов. Обмотка возбуждения укладывается в 2 паза в пределах полюсной дуги, компенсационная обмотка размещается равномерно во всех оставшихся пазах расточки статора.
Двигатели типов 4ПО, 4ПБ имеют степень защиты IP44. Они рассчитаны на длительный режим работы (S1), но допускают эксплуатацию в режимах S3 - S8, изготавливаются с параллельным или независимым возбуждением 220В.

Широкорегулируемые электродвигатели типа 4ПФ обладают степенью защиты IP23. Они поставляются со встроенным тахогенератором типа ТП80-20-0,23 и датчиком тепловой защиты. Возбуждение независимое от напряжения 110 и 220В.
Двигатели типа 4ПФ имеют статор восьмигранного сечения, который набирается из листов электротехнической стали толщиной 0,5 мм. Он запрессован между двумя нажимными плитами толщиной 10 мм из стального проката. В осевом направлении пакет статора стянут шпильками и приварен по углам по накладным планкам, которые обеспечивают поперечную жесткость. В нажимных плитах сделаны резьбовые отверстия для болтов крепления подшипниковых щитов.

Обмотки статора наматываются машинным способом.

Для вентиляции в статоре предусмотрены аксиальные каналы. Подшипниковые щиты - чугунные, литые. Лапы изготавливаются на подшипниковых щитах. Щеткодержатели - радиальные унифицированной конструкции.

Электродвигатели выполняются с подшипниками качения класса точности 6.
Для механизмов, эксплуатирующихся в тяжелых условиях (металлорежущие станки, металлургическое производство), изготавливаются крупные электродвигатели серии 4П с высотой оси вращения 350 и 450 мм.

В условном обозначении этих двигателей после серии (4П) последовательно указываются высота оси вращения, количество щеток на коллекторе, мощность при основном напряжении, климатическое исполнение (У или Т), категория размещения.

Двигатели могут изготавливаться на напряжение 440, 660, 750, 930 В. Возбуждение - независимое (напряжение 220 В). Основной режим работы продолжительный (S1), но допускается работа в режимах S3 - S8. Двигатели выполняются с тахогенератором постоянного тока и реле скорости. Вентиляция принудительная от отдельного вентилятора. Степень защиты IP44.

Электродвигатели постоянного тока серии ПГ (ПГТ) изготавливаются с гладким якорем и предназначены для работы в быстродействующих электроприводах слежения и широкорегулируемых электроприводах металлорежущих станков и других рабочих машин при питании от источников постоянного тока и полупроводниковых преобразователей. Электродвигатель может быть с тахогенератором типа TC-IM (серия ПГТ). Режим работы продолжительный (S1).
В условном обозначении последовательно указываются: серия (ПГ), буква Т - при наличии встроенного тахогенератора, мощность, М - модернизированный, климатическое исполнение, категория размещения.

Двигатели изготавливаются в защищенном исполнении, воздух продувается с помощью вентилятора-наездника, который приводится в движение асинхронным двигателем.

Двигатели серии ЭП предназначены для работы в широкорегулируемых электроприводах металлорежущих станков высокой точности и специальных установок. В условном обозначении после букв ЭП указывается: в числителе - номинальное напряжение, а в знаменателе - мощность (условно). Номинальный режим работы S1.

Для прокатных станов, шагающих экскаваторов, шахтных подъемников, гребных установок и испытательных стендов предназначены машины постоянного тока большой мощности серий П2 и МП. Их мощность составляет 3150 - 12 500 кВт при частоте вращения 36 -800 об/мин, напряжение - 440, 750, 930 В.
Для питания мощных двигателей постоянного тока главных приводов прокатных станов используют генераторы постоянного тока серии ГП.

Существуют серии машин постоянного тока специального назначения: крановые, металлургические, тяговые, микромашины систем автоматики.

Двигатели серии Д предназначены для специализированных кранов, вспомогательных металлургических механизмов с повторно-кратковременным режимом работы, большим числом включений, широким диапазоном регулирования скорости. При регулировании двигателей допускается увеличение напряжения до 440 В относительно номинального 220 В. Средняя скорость тихоходного исполнения 700; быстроходного - 1200 об/мин. Для тихоходных двигателей допустимое число включений в час составляет 2000, для быстроходных - 300. Класс нагревостойкости изоляции обмоток и коллектора Н (превышение температуры 120 °С).

Основное конструктивное исполнение двигателей закрытое со степенью защиты IP21. Двигатели серии Д810 - Д818 имеют разъемную станину. Оба конца вала двигателя одинаковые и могут передавать момент через шестерню, изготавливаются на мощность 2,5 - 185 кВт. Для тепловозов выпускаются генераторы постоянного тока серии ГП на мощность 700 - 2000 кВт, напряжение 310 - 810 В, частоту вращения 900 - 4220 об/мин и предназначены для питания тяговых электродвигателей. Станина генератора цилиндрическая с опорными лапами по бокам. Главные полюса шихтованные, на них расположены обмотки независимого и последовательного (для пуска дизеля) возбуждения. Добавочные полюса выполнены сплошными из толстолистовой стали.

В качестве тяговых электродвигателей тепловозов применяют машины постоянного тока последовательного возбуждения серии ЭД, которые изготавливаются на мощность 230 - 411кВт, напряжение 381 -700 В и частоту вращения 585 - 3050 об/мин. Двигатели имеют независимую вентиляцию и защищенное исполнение.

Для электровозов выпускаются тяговые электродвигатели серий ТЛ (670кВт, 1500 В), НБ (575 - 790кВт, 950 - 1100В), ДТ (465 кВт, 1500 В).

На городском электрифицированном транспорте применяют тяговые электродвигатели постоянного тока серии ДК. Они изготавливаются со степенью защиты IP20, с самовентиляцией, воздух подается со стороны коллектора. Серия ДК характеризуется мощностью 45 - 185 кВт, напряжением 275 - 750 В, средней частотой вращения 1500 об/мин. Для удобства обслуживания электродвигатели трамваев имеют только по два пальца щеткодержателей, которые расположены в нижней части станины.

Электродвигатели постоянного тока серии ДК (230 - 560 кВт, 550 -750 В, 550 - 1040 об/мин) предназначены для встраивания в колеса автосамосвалов и автопоездов грузоподъемностью 75 - 180 т. Двигатель встраивается в центральную часть колеса и крепится к неподвижной части фланцем, который расположен на круглой станине двигателя. Один шлицевый конец вала служит для передачи вращающего момента через редуктор планетарного типа, второй используют для крепления диска тормоза с электро- или пневмоприводом. Выводные концы привода расположены на подшипниковом щите со стороны коллектора. Двигатель не имеет коробки выводов.

Возбуждение электродвигателя последовательное, используется также обмотка независимого (параллельного) возбуждения. Двигатель имеет компенсационную обмотку для улучшения коммутации. Вентиляция двигателя независимая, с подачей воздуха через один из люков со стороны коллектора. Степень защиты IP20.

Для безрельсового напольного электротранспорта (погрузчики, электроштабелеры, электротягачи) выпускаются электродвигатели серий ЗДТ, ГТ, ДК, РТ, ЗДВ мощностью 1,35 - 21 кВт и напряжением 24 - 110В. Все двигатели четырехполюсные, обмотки якорей двигателей волновые, сделаны из прямоугольного медного провода и удерживаются в пазах бандажом из стеклоленты или стальной луженой проволоки.

Станины двигателей изготовляются из стальной прокатной трубы. Большинство электродвигателей имеет последовательное возбуждение и закрытое исполнение с естественным охлаждением.

Двигатели серий ДКВ и ДВ характеризуются взрывозащищенным исполнением.

Для привода рудничных аккумуляторных электровозов предназначены электродвигатели серий ДРТ, ДПТР мощностью 2,4 - 19 кВт и напряжением 80 - 250 В. Они имеют взрывозащитное исполнение и естественное охлаждение.
Двигатели постоянного тока серий ДК и ЭТ предназначены для контактных рудничных электровозов, которые работают в невзрывоопасной среде.
Крупные электрические машины постоянного тока используются для работы в приводах одноковшевых экскаваторов с емкостью ковша 4 м3 и более и в роторных экскаваторах.

Электродвигатели серий МПЭ и МПВЭ применяются для привода механизмов поворота, подъема, тяги и шагания экскаваторов и работают в режимах широкого регулирования скорости, частых реверсов с большими кратковременными перегрузками. Генераторы (серия ГПЭ), которые входят в состав преобразовательных агрегатов, предназначены для питания электродвигателей механизмов главных приводов экскаваторов.

Электродвигатели изготавливаются мощностью 500 - 1120 кВт и напряжением 440 В, а генераторы - 75 - 2500 кВт и напряжением 460, 630, 750, 930 и 1200 В.
Для питания двигателей приводов механизмов экскаваторов выпускаются также генераторы постоянного тока серий 2МП, 2ПЭ (14 -520кВт, 115 - 750 В, 1000 - 1500 об/мин).

Для экскаваторных электроприводов применяются также крановые электродвигатели постоянного тока экскаваторной модификации (серия ДЭ) мощностью до 200 кВт.

3 Устройство, принцип действия

Электрическая машина постоянного тока состоит из статора, якоря, коллектора, щеткодержателя и подшипниковых щитов (рисунок 1). Статор состоит из станины (корпуса), главных и добавочных полюсов, которые имеют обмотки возбуждения. Эту неподвижную часть машины иногда называют индуктором. Главное его назначение - создание магнитного потока. Станина изготавливается из стали, к ней болтами крепятся главные и добавочные полюса, а также подшипниковые щиты. Сверху на станине имеются кольца для транспортирования, снизу - лапы для крепления машины к фундаменту. Главные полюса машины набираются из листов электротехнической стали толщиной 0,5 -1 мм с целью уменьшения потерь, которые возникают из-за пульсаций магнитного поля полюсов в воздушном зазоре под полюсами. Стальные листы сердечника полюса спрессованы и скреплены заклепками.

Рисунок 1 – Машина постоянного тока:
I - вал; 2 - передний подшипниковый щит; 3 - коллектор; 4 - щеткодержатель; 5 - сердечник якоря с обмоткой; б - сердечник главного полюса; 7 - полюсная катушка; 8 - станина; 9 - задний подшипниковый щит; 10 - вентилятор; 11 - лапы; 12 - подшипник


Рисунок 2 – Полюса машины постоянного тока:
а - главный полюс; б - дополнительный полюс; в - обмотка главного полюса; г - обмотка дополнительного полюса; 1 - полюсный наконечник; 2 - сердечник

В полюсах различают сердечник и наконечник (рисунок 2). На сердечник надевают обмотку возбуждения, по которой проходит ток, создавая магнитный поток. Обмотка возбуждения наматывается на металлический каркас, оклеенный электрокартоном (в больших машинах), или размещается на изолированном электрокартоном сердечнике (малые машины). Для лучшего охлаждения катушку делят на несколько частей, между которыми оставляют вентиляционные каналы. Добавочные полюса устанавливаются между главными. Они служат для улучшения коммутации. Их обмотки включаются последовательно в цепь якоря, поэтому проводники обмотки имеют большое сечение.

Якорь машины постоянного тока состоит из вала, сердечника, обмотки и коллектора. Сердечник якоря собирается из штампованных листов электротехнической стали толщиной 0,5 мм и спрессовывается с обеих сторон с помощью нажимных шайб. В машинах с радиальной системой вентиляции листы сердечника собираются в отдельные пакеты толщиной 6-8 см, между которыми делают вентиляционные каналы шириной 1 см. При осевой вентиляции в сердечнике выполняют отверстие для прохождения воздуха вдоль вала. На внешней поверхности якоря имеются пазы для обмотки.


Рисунок 3 – Расположение секции обмотки якоря в пазах сердечника

Обмотка якоря изготавливается из медных проводов круглого или прямоугольного сечения в виде заранее выполненных секций (рисунок 3). Они укладываются в пазы, где тщательно изолируются. Обмотку делают двухслойной: размещают в каждом пазу две стороны разных якорных катушек - одну над другой. Обмотку закрепляют в пазах клиньями (деревянными, гетинаксовыми или текстолитовыми), а лобовые части крепят специальным проволочным бандажом. В некоторых конструкциях клинья не применяют, а обмотку крепят бандажом. Бандаж изготовляют из немагнитной стальной проволоки, которая наматывается с предварительным натяжением. В современных машинах для бандажировки якорей используют стеклянную ленту.

Коллектор машины постоянного тока собирается из клиноподобных пластин холоднокатаной меди. Пластины изолируют одну от другой прокладками из коллекторного миканита толщиной 0,5 - 1 мм. Нижние (узкие) края пластин имеют вырезы в виде "ласточкина хвоста", которые служат для крепления медных пластин и миканитовой изоляции. Коллекторы крепят нажимными конусами двумя способами: при одном из них усилие от зажима передается только на внутреннюю поверхность "ласточкина хвоста", при втором - на "ласточкин хвост" и конец пластины.

Коллекторы с первым способом крепления называют арочными, со вторым - клиновыми. Наиболее распространены арочные коллекторы.

В коллекторных пластинах со стороны якоря при небольшой разнице в диаметрах коллектора и якоря делают выступы, в которых фрезеруют прорези (шлицы). В них укладывают концы обмотки якоря и припаивают оловянистым припоем. При большой разнице в диаметрах припайка к коллектору делается с помощью медных полосок, которые называются "петушками".

В быстроходных машинах большой мощности для предотвращения выпучивания пластин под действием центробежных сил применяют внешние изолированные бандажные кольца.

Щеточный аппарат состоит из траверсы, щеточных пальцев (болтов), щеткодержателей и щеток. Траверса предназначена для крепления на ней щеточных пальцев щеткодержателей, образующих электрическую цепь.
Щеткодержатель состоит из обоймы, в которую помещается щетка, рычага для прижима щетки к коллектору и пружины. Давление на щетку составляет 0,02 - 0,04 МПа.

Для соединения щетки с электрической цепью имеется гибкий медный тросик.
В машинах малой мощности применяют трубчатые щеткодержатели, которые крепят в подшипниковом щите. Все щеткодержатели одной полярности соединяются между собой сборными шинами, которые подключаются к выводам машины.

Щетки (рисунок 4) в зависимости от состава порошка, способа изготовления и физических свойств разделяют на шесть основных групп: угольно-графитовые, графитовые, электрографитовые, медно-графитовые, бронзографитовые и серебряно-графитовые.

Подшипниковые щиты электрической машины служат в качестве соединительных деталей между станиной и якорем, а также опорной конструкцией для якоря, вал которого вращается в подшипниках, установленных в щитах.


Рисунок 4 – Щетки:
а - для машин малой и средней мощности; б - для машин большой мощности; 1 - щеточный канатик; 2 - наконечник

Различают обычные и фланцевые подшипниковые щиты.

Подшипниковые щиты изготовляют из стали (реже из чугуна или алюминиевых сплавов) методом литья, а также сварки или штамповки. В центре щита делается расточка под подшипник качения: шариковый или роликовый. В машинах большой мощности в ряде случаев используют подшипники скольжения.

В последние годы статор двигателей постоянного тока собирают из отдельных листов электротехнической стали. В листе одновременно штампуются ярмо, пазы, главные и добавочные полюса.

tattooe.ru - Журнал современной молодежи