Пид параметр в ограничении. Технически оптимальная настройка регуляторов

Регуляторы процесса (Process Controllers) – это параметрируемые цифровые контроллеры со встроенным набором стандартных функций для регулирования технологических переменных (температуры, давления и т.п.).

В качестве сигналов задания (Reference) могут использоваться как фиксированные уставки (Fixed Setpoints), так и внешние (External).

Аналоговые входы используются для подключения датчиков обратной связи (термометров сопротивления, термопар, манометров и т.п.).

Дискретные входы используются для задания фиксированных уставок и переключения между режимами.

Дискретные выходы используются для сигнализации: готовности, аварий, состояния.

Релейные выходы используются для дискретного управления, а аналоговые выходы – для непрерывного управления.

Дискретное управление

  • 2-х позиционный регулятор использует только 2 состояния:
    • включено (открыто)
    • выключено (закрыто)
    • Пример: управление нагреванием или охлаждением.
  • 3-х позиционный регулятор использует 3 состояния:
    • выключено
    • вращение по часовой стрелке
    • вращение против часовой стрелки (реверс)
    • Пример: управление реверсивным электродвигателем.
  • 5-и позиционный регулятор использует 5 состояний:
    • выключено
    • вращение на первой скорости по часовой стрелке
    • вращение на второй скорости по часовой стрелке
    • вращение на первой скорости против часовой стрелки
    • вращение на второй скорости против часовой стрелки
    • Пример: управление 2-скоростным реверсивным двигателем.

Непрерывное управление

Для непрерывного управления используются ПИД-регуляторы. Возможна реализация каскадного (подчинённого) управления.

Замкнутая система управления

Переходный процесс

Переходный процесс – это реакция системы на внешнее воздействие (задание, возмущение).

Неустойчивый (расходящийся) переходный процесс

Устойчивый (сходящийся) переходный процесс

ПИД-регулятор

С помощью настройки ПИД-регулятора (PID-controller) мы можем скорректировать переходный процесс так, как нам нужно для решения своей задачи.



Х зад – заданное (желаемое) значение выходной переменной
X max – верхний допустимый предел выходной переменной
X min – нижний допустимый предел выходной переменной
Т – период колебаний
Т н – время нарастания
Т р – время переходного процесса (последняя точка пересечения кривой с X min или X max)
А 1 – первое перерегулирование
А 2 – второе перерегулирование
d=А 1 /A 2 - степень (декремент) затухания переходного процесса (отношение первого перерегулирования ко второму)

Рассогласование, перерегулирование, время нарастания, время переходного процесса, степень затухания характеризуют качество регулирования .

Пример

ПИД-регулятор открывает и закрывает регулирующий вентиль на горячей трубе так, чтобы из крана текла вода с температурой +40°С с погрешностью плюс-минус 2 градуса. Регулятор вычисляет рассогласование (ошибку) - отклонение реальной температуры (например, +20°С) от заданного значения (+40°С) и решает – когда и насколько необходимо приоткрыть горячий вентиль, чтобы температура повысилась на 20С. Реальную (фактическую) температуру регулятор узнаёт с помощью датчика температуры (обратная связь), а заданную температуру (уставку) ему сообщает оператор, например, набирая число «40» на своём ПК.

Чтобы настроить ПИД-регулятор, необходимо подобрать правильную комбинацию трёх коэффициентов:

  • Пропорционального – K p
  • Интегрального – K i
  • Дифференциального – K d

Могут использоваться и более простые - П и ПИ-регуляторы.

Формула ПИД-регулятора

где e(t) - ошибка (рассогласование), u(t) - выходной сигнал регулятора (управляющее воздействие).

Чем больше П ропорциональный коэффициент, тем выше быстродействие, но меньше запас устойчивости. Но! простой П-регулятор не может полностью отработать рассогласование, т.е. всегда работает с ошибкой.

ПИ-регулятор позволяет избавиться от статической (установившейся) ошибки, но, чем больше И нтегральный коэффициент, тем больше перерегулирование (динамическая ошибка).

ПИД-регулятор позволяет нам уменьшить перерегулирование, но, чем больше Д ифференциальный коэффициент, тем больше погрешность из-за влияния шумов.

Если шумы идут по каналу обратной связи, то мы можем их отфильтровать с помощью фильтра низкой частоты, но чем больше постоянная этого фильтра, тем медленнее регулятор будет отрабатывать возмущения.

Настройка ПИД-регулятора по методу Циглера-Николса

Циглер и Николс предложили свой вариант быстрой настройки ПИД-регулятора для периодического переходного процесса, в котором затухание примерно равно 4.

  • Обнуляем K i и K d
  • Постепенно увеличиваем Kp до критического значения K c , при котором возникают автоколебания
  • Измеряем период автоколебаний Т
  • Вычисляем значения K p , K i и K d по разным формулам для разных регуляторов:
    • для П-регулятора: K p =0,50*K c
    • для ПИ-регулятора: K p =0,45*K c , K i =1,2*K p /T
    • для ПИД-регулятора: K p =0,60*K c , K i =2,0*K p /T, K d =K p *T/8

Каскадный регулятор (подчинённое управление)

Продолжение примера

Теперь нам захотелось добавить комфорта и сделать так, чтобы уставка задания температуры воды менялась в зависимости от температуры воздуха на улице (на улице мороз – вода горячая, на улице жара – вода прохладная). Можно установить ещё один регулятор комфортной температуры, который по показаниям термометра узнаёт фактическую температура наружного воздуха и решает, что комфортная температура воды должна быть, например, +40°С, поэтому он выдаёт задание регулятору температуры воды – поддерживать температуру на уровне +40С (см. пример выше). Здесь мы имеем каскадное регулирование: контур регулирования температуры воды подчинён контуру регулирования комфортной температуры воды.

С помощью регуляторов процесса мы можем реализовать и более сложные связи. Например, поддерживать постоянный расход и температуру воды, независимо от давления и температуры горячего и холодного трубопроводов.

Упреждающее регулирование (Feedforward Control)

Не всегда простой ПИД-регулятор в системе с обратной связью может обеспечить требуемое быстродействие из-за возникновения нежелательных колебаний или недопустимо большого перерегулирования. Для улучшения характеристик регулирования применяют комбинированное управление – с обратной связью (closed-loop) и без обратной связи (open-loop). К управляющему воздействию (выходу регулятора) добавляется сигнал упреждающего воздействия, который не зависит от рассогласования, а значит, не может вызвать автоколебания в системе.

Продолжение примера

Если мы доверяем прогнозу погоды, то вместо каскадного управления мы можем реализовать упреждающее регулирование без измерения уличной температуры: читаем прогноз на завтра, задаём уставку +40°С по таймеру времени на завтра на 7 утра.

Если измерить возмущение , то можно подать упреждающее воздействие, которое компенсирует влияние этого возмущения на процесс до того, как начнёт изменяться регулируемый параметр.

Для определения оптимальных параметров настройки регуляторов (параметрической оптимизации) АСР необходимо иметь сведения о статических и динамических характеристиках объекта регулирования и действующих возмущений. Наиболее достоверными являются экспериментально определенные статические характеристики.

Оптимальная настройка ПИД-регулятора позволяет максимально быстро и почти без перерегулирования вывести объект на уставку. Признак правильной настройки – плавный, без рывков, рост регулируемого параметра и наличие тормозящих импульсов при подходе к уставке как снизу, так и сверху (рис. 14.39).

Если объект выходит на уставку с небольшим перерегулированием и быстрозатухающими колебаниями, можно немного уменьшить коэффициент усиления, оставив все остальные параметры без изменения.

Величина максимума амплитудно-частотной характе­ристики замкнутой системы регулирования, а также ее резонансная частота могут быть определены из временной характеристики системы относительно управляющего воздействия по условной величине ее степени затухания и частоте(рис. 14.40).


Рис. 14.39. Оптимальная работа ПИД-регулятора


Рис. 14.40. Переходная характеристика замкнутой системы регулирования

Указанное обстоятельство позволяет приближенно определить параметры регулируемого объекта ипо полученной экспериментально кривой переходного процесса при ступенчатом воздействии со стороны задатчика регулятора. Действительно, если известны сте­пень затухания переходного процесса и его частота, а также числовые значения параметров настройки ре­гулятора, при которых регистрировался этот процесс, то принципиально не представляет труда определить, каковы должны быть числовые значения параметров объектаидля то­го, чтобы амплитудно-фа­зовая характеристика разомкнутой системы с из­вестными параметрами настройки регулятора ка­салась окружности с ин­дексом, соответствующим этой степени затухания при частоте, соответству­ющей частоте переходного процесса.

Порядок определения оптимальной настройки ПИ-регулятора по графику временной характеристики за­мкнутой системы регулирования с помощью графиков заключается в следующем:

1. Система регулирования при произвольной настройке регулятора включается в работу. Убедившись, чтоона работает устойчиво, быстро изменяют задание регулятору на некоторую достаточно большую, но допустимую по условиям эксплуатации величину и регистрируют процесс изменения регулируемой величины во времени.

2. Из полученного графика изменения регулируемой величины, типовой вид которого приведен на рис. 14.40, определяются степень затухания и период колебаний переходного процессаТ.

3. Вычислив величину отношения периода колебаний переходного процесса к установленному в регуляторе во время проведения эксперимента значению времени изодрома, находят величины поправочных множителей на величину коэффициента пере­дачи регулятора и на величину его времени изодрома, т.е. определяют, во сколько раз следует изменить чи­словые значения параметров настройки регулятора, чтобы настройка оказалась близкой к оптималь­ной.

4. Установив найденные параметры настройки в ре­гуляторе, опыт повторяют и производят повторный рас­чет, аналогичный изложенному выше. Если окажется, что числовые значения поправочных коэффициентов близки к единице (находятся в пределах 0,95–1,05), можно считать, что настройка окончена. В противном случае необходимо произвести повторную перена­стройку.

В практике наладочных работ используют приближенные формулы для определения оптимальных параметров настройки регуляторов для объектов, описываемых нижеприведенными выражениями при различных критериях оптимальности.

1. Всесоюзным теплотехническим институтом имени Ф.Э. Дзер­жинского (ВТИ) рекомендуются для степени затухания за период  = 0,75 и интегральной квадратичной оценки, близкой к минимуму, следующие формулы расчета для параметров ПИ-регу­лятора с передаточной функцией:

W (P ) =K p (Т из Р + 1)/Т из Р .

При 0 <  об /Т а < 0,2

, Т из = 3,3 об.

При 0,2 <  об /Т а < 1,5

, Т из = 0,8Т а .

При = 0,9, 0 < об /Т а < 0,1

, Т из = 5 об.

При 0,1 <  об /Т а < 0,64

, Т из = 0,5Т а .

2. Имеются номограммы для подобных объектов, чтобы в зависимости от параметров объекта и заданного затухания определитьK р ,Т из (метод Ротача).

3. Существует метод компенсации большой постоянной времени объекта (Т из = Т об ) при коэффициенте демпфирования = 707 (модульный оптимум).

4. Аналитический расчет границы устойчивости и параметров регулятора при заданной степени колебательности по расширенным частотным характери­стикам (метод Стефани) также применяется при наличии ЭВМ и соответствую­щих методик расчета. Все методики дают близкие результаты расчета параметров регулятора и, соответственно, близкие переходные процессы.

5. На практике расчеты регуляторов заканчиваются наладочными работами, когда используются экспериментальные методы параметрической оптимизации .

Эти методы основаны на прямом контроле переходных или частотных характеристик в процессе подбора оптимальных параметров настройки или с па­раметрами, заведомо обеспечивающими устойчивое движение АСР. Затем, вводя возмущение, наблюдают реакцию системы на эти возмущения. Целена­правленно изменяя параметры настройки регулятора, добиваются нужного ха­рактера переходного процесса. Это многошаговая итерационная процедура. Данные методы разработаны настолько, что позволяют автоматизировать этот процесс при минимальном участии человека 3 .

Самая простая настройка, когда в замкнутой АСР с ПИ-регу­ля­тором (при ПИ-регуляторе Т из устанавливают очень большим) увеличиваютK p до границы устойчивости, определяютK p .кр и Т пер.кр период установившихся ко­лебаний. Затем выставляют параметры:

Для П-регулятора K p .опт = 0,55 K p .кр;

Для ПИ-регулятора K p .опт = 0,55K p .кр,Т из = 1,25Т пер.кр.

6. Лучшие результаты дает пошаговая оптимизация с оценкой переходной характеристики на каждом шаге.

В плоскости параметров настройки ПИ-регулятора существуют линии одинаковой степени затухания (рис. 14.41).

Одно и то же затухание (пусть ψ= 0,75) можно получить при различных параметрах регулятора. Нужно обеспечить при этом минимальную квадратичную ошибку, которая изменяется в плоскости как показано на рис. 14.42. Таким образом, надо искать оптимальную точку настройки.


Из кривых (рис. 14.43) для различных настроек можно видеть, что в точках 1 и 2 переходные процессы затянуты, в точке 4 имеется апериодическая составляющая, затягивающая процесс. Поиск оптимальной настройки состоит из следующих этапов (рис. 14.44, 14.45):

1. ЗавышаютТ из, занижаютK р (точка 1).

2. Увеличивают K р , чтобы при колебательном процессе ψ = 0,8–0,9 (точка 2 ).



Рис. 14.44. Этапы практической настройки параметров ПИ-регулятора

3. УменьшаютТ из, чтобы избавиться от апериодической составляющей (точки3 ,4 ).

4. УменьшаютK р , чтобы приψ= 0,95…1 и при различных вариациях динамических свойств объекта регулирования переходные процессы были слабоколебательными (точка5 ).

Данный метод оптимизации не требует точного определения параметров объекта и параметров регулятора, так как варьирование параметров настройки производят относительно исходных значений, поэтому он широко применяется.


Рис. 14.45. Характер переходных процессов при различных настройках параметроврегуляторов

К примеру, в инструкции для наладчика САР с цифровым ПИ-регулятором даны следующие рекомендации.

    регулятор настроен на ПИ-регулирование;


Рис. 14.46. Переходный процесс выходного сигнала ПИ-регулятора

    структурная схема управления приведена на рис. 14.47;


Рис. 14.47. Структурная схема управления объектом с пневматическим исполнительным механизмом:w – задающее воздействие;x – регулируемая величина;xd – отклонение регулируемой величины;y – управляющее воздействие;1 – измерительный преобразователь; 2 – задатчик величины; 3 – регулировочный усилитель; 4 – электропневматический преобразователь сигнала; 5 – датчик; 6 – пневматический исполнительный блок

– пропорциональный коэффициент K р = 0,1;

– время изодрома T n = 9984 с;

– время предварения T v =oFF ;

– настройка параметров ПИ-регулятора:

установить желаемую заданную величину и в ручном режиме установить рассогласование регулирования на ноль;

переключиться на автоматический режим;

медленно увеличивать K р , пока регулирующий контур через малые изменения заданной величины не начнет клониться к колебаниям;

незначительно уменьшать K р , пока колебания не будут устранены;

уменьшать T n до тех пор, пока регулирующий контур снова не начнет клониться к колебаниям;

медленно увеличивать T n до тех пор, пока уклон к колебаниям не будет устранен.

Билет №16

    насосы - машины, подающие жидкости;

    вентиляторы и компрессоры - машины, подающие воздух и технические газы.

Вентилятор - машина, перемещающая газовую среду при степени повышения давления Ер < 1,15 (степень повышения давления Ер - отношение давления газовой среды на выходе из машины к давлению ее на входе).

Компрессор - машина, сжимающая газ с Ер >1,15 и имеющая искусственное (обычно водяное) охлаждение полостей, в которых происходит сжатие газов.

Согласно ГОСТ 17398-72 нагнетатели (насосы) подразделяются на две основные группы: насосы динамические и объем­ные.

    В динамических нагнетателях передача энергии жидкости или газу происходит путем работы массовых сил потока в полости, постоянно соединенной с входом и выходом нагнетателя.

    В объемных нагнетателях повышение энергии рабочего тела (жидкости или газа) достигается силовым воздействием твердых тел, например поршней в поршневых машинах в рабочем пространстве цилиндра, периодически соединяемым при помощи клапанов с входом и выходом нагнетателя.

При прочих равных условиях пропорционально-интегрально-дифференциальные или ПИД (PID - Proportional-Integral-Derivative) регуляторы позволяют поднять точность управления в 5-100 раз по сравнению с позиционным регулятором.

Наиболее часто в задачах АСУ ТП применяются двухпозиционное регулирование и ПИД регулирование.

Двухпозиционное регулирование обеспечивает включение или отключение исполнительного устройства (например, нагревателя) в зависимости от того, ниже или выше измеренный параметр относительно заданного уровня. При двухпозиционном регулировании в системе всегда присутсвуют колебания технологического параметра, причем размах этих колебаний определяется только параметрами системы (инерционностью датчиков, исполнительного устройства и самой системы) и практически не зависит от регулятора.

При ПИД регулировании сигнал управления зависит от разницы между измеренным параметром и заданным значением, от интеграла, от разности и от скорости изменения параметров. В результате ПИД регулятор обеспечивает такое состояние исполнительного устройства (промежуточное между включен или выключен), при котором измеренный параметр равен заданному. Поскольку состояние исполнительного устройства стабилизируется, точность поддержания параметра в системе повышается в десятки раз. Таким образом, закон регулирования обеспечивает точность.

В принципе, точность поддержания будет определяться точностью измерения сигнала и интенсивностью внешних воздействий на объект.

Pb - начальная температура в системе

ti - постоянная времени интегрирования
td - постоянная времени дифференцирования

Сигнал управления для ПИД регулятора определяется тремя компонентами:

(П - пропорциональная компонента)

Сигнал управления, который вырабатывает регулятор, определяется тем, насколько велико рассогласование (пропорциональная компонента), насколько долго сохраняется рассогласование (интегральная компонента) и, наконец, как быстро изменяется рассогласование (дифференциальная компонента).

Качество управления, которое обеспечивает ПИД регулятор в значительной степени зависит от того, насколько хорошо выбранные параметры регулятора соответствуют свойствам системы. Это означает, что ПИД регулятор перед началом работы необходимо настроить.

Качество регулирования ПИД-регулятора определяется точностью настройки его параметров. Существует много различных методик настройки ПИД регуляторов. В основе большинства из них лежит анализ переходной характеристики.

Этап 1. Настройка пропорциональной компоненты ПИД-регулятора

Перед настройкой зоны пропорциональности интегральная и дифференциальная компоненты отключаются, либо постоянная интегрирования устанавливается максимально возможной, а постоянная дифференцирования- минимально возможной. Устанавливается необходимая уставка SP. Зона пропорциональности устанавливается равной 0 (минимально возможной). В этом случае регулятор выполняет функции двухпозиционного регулятора. Регистрируется переходная характеристика.

Тнач - начальная температура в системе
Туст - заданная температура (уставка)
Δ Т- размах колебаний температуры
Δ t - период колебаний температуры

Установить зону пропорциональности равной размаху колебаний температуры: Pb=Δ Т. Это значение служит первым приближением для зоны пропорциональности. Следует проанализировать переходную характеристики еще раз и при необходимости скорректировать значение зоны пропорциональности. Возможные варианты переходных характеристик показаны на рис.2.

Переходная характеристика типа 1
Значение зоны пропорциональности по-прежнему очень мало, переходная характеристика (а значит, и настройка регулятора) далека от оптимальной. Зону пропорциональности следует значительно увеличить.


В переходной характеристике наблюдаются затухающие колебания (5-6 периодов). Если в дальнейшем предполагается использовать и дифференциальную компоненту ПИД регулятора, то выбранное значение зоны пропорциональности является оптимальным. Для этого случая настройка зоны пропорциональности считается законченной.
Если в дальнейшем дифференциальная компоненты использоваться не будет, то рекомендуется еще увеличить зону пропорциональности так, чтобы получились переходные характеристики типа 3 или 4.


В переходной характеристике наблюдаются небольшой выброс и быстро затухающие колебания (1-2 периода). Этот тип переходной характеристики обеспечивает хорошее быстродействие и быстрый выход на заданную температуру. В большинстве случаев его можно считать оптимальным, если в системе допускаются выбросы (перегревы) при переходе с одной температуры на другую.
Выбросы устраняются дополнительным увеличением зоны пропорциональности так, чтобы получилась .

Переходная характеристика типа 4
Температура плавно подходит к установившемуся значению без выбросов и колебаний. Эта тип переходной характеристики также можно считать оптимальным, однако быстродействие регулятора несколько снижено.

Переходная характеристика типа 5
Сильно затянутый подход к установившемуся значению говорит о том, что зона пропорциональности чрезмерно велика. Динамическая и статическая точность регулирования здесь мала.

Следует обратить внимание на два обстоятельства. Во-первых, во всех рассмотренных выше случаях установившееся значение температуры в системе не совпадает со значением уставки. Чем больше зона пропорциональности, тем больше остаточное рассогласование. Во-вторых, длительность переходных процессов тем больше, чем больше зона пропорциональности. Таким образом, нужно стремиться выбирать зону пропорциональности как можно меньше. Вместе с тем, остаточное рассогласование, характерное для чисто пропорциональных регуляторов (П-регуляторов), убирается интегральной компонентой регулятора.

Этап 2. Настройка дифференциальной компоненты (td) ПИД-регулятора

Этот этап присутствует только в том случае, если применяется полнофункциональный ПИД регулятор. Если дифференциальная компонента применяться не будет (используется пропорционально-интегральный (ПИ) регулятор), то следует сразу перейти к этапу 3 (Настройка интегральной компоненты ti).

На этапе настройки зоны пропорциональности установлена зона пропорциональности, соответствующая переходной характеристике типа 2, в которой присутствуют затухающие колебания (см. рис.1, кривая 2, рис.3, кривая 1.). Следует установить постоянную времени дифференцирования так, чтобы переходная характеристика имела вид кривой 2 на рис.2. В качестве первого приближения постоянная времени дифференцирования делается равной td = 0,2Δ t.

Примечательно то, что дифференциальная компонента устраняет затухающие колебания и делает переходную характеристику, похожей на тип 3 (см. рис.1). При этом зона пропорциональности меньше, чем для типа 3. Это значит, что динамическая и статическая точность регулирования при наличии дифференциальной компоненты (ПД-регулятор) может быть выше, чем для П-регулятора.

Этап 3. Настройка интегральной компоненты (ti) ПИД-регулятора



После настройки пропорциональной компоненты (а при необходимости и дифференциальной компоненты) получается переходная характеристика, показанная на рис., кривая 1. Интегральная компонента предназначена для того, чтобы убрать остаточное рассогласование между установившимся в системе значением температуры и уставкой. Начинать настраивать постоянную времени интегрирования следует с величины, равной Δ t.

Переходная характеристика типа 2
Получается при чрезмерно большой величине постоянной времени интегрирования. Выход на уставку получается очень затянутым и длится примерно (3…4)ti.

Переходная характеристика типа 4
Получается при слишком малой величине постоянной времени интегрирования. Выход на уставку также длится (3…4)ti. Если постоянную времени интегрирования уменьшить еще, то в системе могут возникнуть колебания.

Переходная характеристика типа 3
Оптимальная.

Итог

Таким образом, мы рассмотрели процесс поэтапной настройки различных компонент ПИД-регулятора. На каждом этапе контролировался вид переходной характеристики и при необходимости корректировались значения параметров ПИД-регулятора. При этом начальными значениями параметров служили параметры переходной характеристики, полученной для двухпозиционного регулятора, а именно: Pb = ΔТ; ti= Δt; td = 0.2Δt. Опыт показывает, что для большинства случаев эти значения параметров обеспечивают настройку ПИД-регулятора, близкую к оптимальной, и дальнейшая коррекция параметров не требуется.

Для процессов системы требуется способность параметров к реагированию на внешнее действие и поддержание системных постоянных величин. Для примера, система насосов с клапанами отвода. Для каждого клапана поддержание потока в постоянном виде обеспечивает постоянное давление в трубах. Помпа в системе приводится в действие приводом, при открывании клапана скорость двигателя увеличивается и снижается при закрытии, чтобы поддерживать давление в трубах на одном уровне.

Для такого поддержания давления существует прибор, который называется регулятором задания. Давление в трубах на датчике идет в сравнение с параметром заданного давления. Регулятор сравнивает системное давление с давлением задания, определяет задачу скорости для двигателя для изменения ошибки. Простой вид регулятора применяет план действий ПИД-регулирования. В нем применяются три составляющие типа регуляторов для удаления ошибки: дифференциальный, интегральный и пропорциональный регулятор.

Регулятор пропорционального типа.

Такой регулятор – главный, скорость задается в прямой зависимости от ошибки. При применении пропорционального регулятора система будет иметь ошибку. Малые значения коэффициента регулятора пропорционального типа дают вялость системы, а высокие параметры к колебаниям и нестабильности системы.

Регулятор интегрального типа.

Такой регулятор применяется для удаления ошибки. Скорость увеличится до удаления ошибки (снизится при негативной ошибке). Небольшие значения суммирующей составляющей слишком оказывают влияние на деятельность регулятора в общем. При установлении больших значений происходит промахивание системы, она функционирует с перерегулированием.

Регулятор дифференциального типа.

Такой регулятор измеряет скорость корректировки ошибки, применяет для повышения системного быстродействия, увеличивает регуляторное быстродействие в общем. Во время увеличения быстродействия регулятора повышается перерегулирование. Это обуславливает к системной нестабильности. Во многих случаях составляющая дифференциальная становится равной нулю или близкой к наименьшему значению для того, чтобы предотвратить это состояние. Она бывает полезной в позиционирующей системе.

Работа регулятора в обратном и прямом действии.

Множество регуляторов имеют принцип прямого действия. Повышение скорости двигателя приводит к повышению переменной величины процесса. Это случай в системе насосов, давление это величина переменная процесса. Повышение скорости двигателя обуславливает повышение давления. Во многих системах повышение скорости двигателя обуславливает к снижению параметра переменной процесса. Температура вещества, которое обдувается вентиляционной системой теплообменника – процессная переменная величина: при повышении скорости вентиляционной системы температура вещества снижается. В этом разе нужно применить регулятор действия обратного вида.

Настраивание ПИД-регулятора.

Для моторной управляемости системы настраивание ПИД-регулятора бывает сложным процессом. Расскажем, какие шаги для настройки могут сделать проще эту процедуру.

  • 1. Определите значение дифференциальной и интегральной равной нулю. Определите наибольшую скорость и контролируйте системную реакцию.
  • 2. Повышайте составляющую прямопропорционально и выполните первый пункт. Продолжайте действия до момента начала процесса с автоматическими колебаниями возле точки определения скорости.
  • 3. Снижайте пропорциональную величину, пока система не стабилизируется. Волны колебаний начнут затухать.
  • 4. Определите пропорциональную величину около 15% меньше этого постоянного пункта.
  • 5. Определяйте наибольшую скорость прерывисто, повышайте суммирующую составляющую до начала уменьшения колебаний скорости перед стабильным состоянием системы. Снижайте суммирующую составляющую до достижения системой определенной скорости без ошибки и колебаний.
  • 6. Во многих системах настраивание составляющей дифференциального вида не нужно. Если нужно быстродействие системы больше, то можно достигнуть этого путем настройки составляющей дифференциального вида. Устанавливайте скорость по интервалам, повышайте составляющую дифференциального вида, пока не стабилизируется система с наименьшим временем действия (повышайте медленно, избегая состояния нестабильности). Система станет оптимальной при одном перерегулировании.
  • 7. Контролируйте стабильность системы, устанавливая значения скорости с интервалами и периодами для гарантированной стабильности системы при плохом исполнении задания.

Настраивание датчика на 20 миллиампер ПИД-регулированием.

1.Действия в программном меню.

Управляющая панель частотного преобразователя А300 состоит из 3-уровневой структуры:

  1. · Группы опциональных значений (1 уровень).
  2. · Опциональные значения (2 уровень).
  3. · Параметр опционального значения.


2.Настраивание характеристик электромотора и определение направления момента.

Установить метод в значении Р0-02:

  1. · Р0-02=0 (настройка завода, пульт преобразователя).
  2. · Р0-02=1 (входные команды внешнего управления D1-D7).

Установить характеристики номинального значения электромотора (применяйте параметры с таблички и паспорта электромотора):

  1. · Мощность номинала Р1-01= установите значения.
  2. · Напряжение номинала Р1-02= установите значения (по заводским настройкам 380 вольт).
  3. · Ток номинала Р1-03= установите значения.
  4. · Частота номинала Р1-04= установите значения (по заводским настройкам 50 герц).
  5. · Обороты номинального значения Р1-05= установите значения.

После подсоединения и введения параметров нужно проконтролировать направление вращающего момента электромотора. После отключения меню программы на экране покажется 50 герц, клавишей «вниз» установите наименьшую частоту для задания направления вращающего момента. Для пуска мотора нажмите клавишу «пуск» (параметр Р0-02=0), определите направление момента вращения, затормозите мотор, нажав клавишу «стоп». Если вращение не совпадает с направлением, то измените две любые фазы питания мотора (замену фаз производить при отключенном частотнике) или поменяйте параметр настройки Р0-09= (0-вперед, 1-назад). Еще раз проконтролируйте момент вращения, нажав клавишу «пуск», если направление момента вращения совпадает, то затормозите мотор, нажав клавишу «стоп». Нажмите клавишу «вверх» и возвратите настроенную частоту 50 герц.

3.Подсоединение датчика (выход на 20 миллиампер).

  1. · Установку производить при выключенном питании частотного преобразователя.
  2. · Напряжение датчика подсоединить к контакту «+24В», сигнал соединить с контактом «AI1», установить перемычку на контакты «COM» и «GND».

Переставить соединение «J1» в состояние «I».

4.Контроль обратной связи.

  1. · Подключите напряжение на частотный преобразователь, на экране возникнет подсветка 50 герц.
  2. · Нажмите клавишу «сдвиг» 2 раза.
  3. · На экране будет параметр обратной связи в интервале 0-10 (0-20 мА), зависит от настраиваемого параметра.

Связь обратного вида (4 мА).

  1. · После подтверждения обратной связи нажмите три раза клавишу «сдвиг», появится на экране 50 герц.
  2. · Установите наименьшее значение сигнала входа в величине Р4-13=2.00 (4 мА).

5.Как настраивать значение параметра ПИД-регулирования.

  1. · Установите источник основной частоты Р0-03=8 (частоту определяет ПИД-регулятор).
  2. · Поставьте значение ПИД-регулятора в значение РА-01= результат поддерживаемой величины в процентах (от 0 до 100%) от интервала датчика, РА-01= (результат поддерживаемого параметра/интервал датчика)*100%.

Пример установки значения:

Подсоединен датчик давления на 16 бар с сигналом выхода от 4 до 20 мА. Для давления в 10 бар нужно установить значение

РА-01=(10/16)*100%=62,5%

Произведите тестовый пуск. Проверяйте поддерживаемое значение параметра по приборам, дублирующим измерения (ротаметр, термометр, манометр). Если система регулировки функционирует нестабильно или долгий отклик на замену проверяемого параметра, то применяйте настройки значений РА-05, -06, -07. Эти значения предназначены для точной настройки ПИД-регулятора.

Пример использования регулирования ПИД.

Данные.

  1. · Механизм вентиляторного управления.
  2. · Характеристика градуировочная датчика давления, интервал 1000-5000 Па, ток 4-20 мА.
  3. · Значение давления 1500 Па.
  4. · Мощность механизма и инерционные данные вентилятора отсутствуют.

Наружные подключения.

Датчик обратной связи подсоединен к токовому входу аналогового типа, датчик значения уставки к входу аналогового типа напряжения.

Обратная связь.

Датчик связи определен по токовому выходу, входом связи обратного вида применяется токовый вход. Задается РR.10-00=02 (обратная связь с минусом по входу, повышение частоты выхода, повышает давление).

Отградуированная характеристика датчика.

Сигнал связи обратного вида в масштабе.

Вход связи обратного вида не создает масштаб по усилению и смещению. Применяя параметр PR10-01 можно изменять значение сигнала связи обратного вида в расчетах.

Применение параметра PR10-01 для корректировки значения сигнала связи обратного типа.

Значением PR10-01 можно корректировать значение сигнала связи обратного вида, который применяется в вычислениях. Интервал пропорциональности 0-10, по настройкам завода 1.

Сигнал связи обратного вида повышается в 2 раза перед установкой в ПИД-регулятор. Это равно снижению интервала входа в 2 раза.

Сигнал связи обратного вида снижается в 2 раза перед установкой в регулятор, это эквивалентно увеличению интервала входа в 2 раза. Сейчас интервал ограничен значением датчика.

Пример установки значения параметра PR10-01 (масштаб усиления обратной связи).

Интервал действия датчика:

1000Ра – 5000Ра.

Наибольшее давление функционирования: 2000Ра.

Применяемая часть интервала работы датчика (закрепленная): -1000Ра-2000Ра.

Это будет равно: 2000Ра –(-1000Ра)

5000Ра –(-1000Ра) = 50%

Если интервал действия не больше 2000Ра с датчиком, то величина параметра

PR10-01 = 1/50%=2

Формула вычисления параметра PR10-01.

Наибольший сигнал датчика: MaxVal

Наименьший сигнал датчика: MinVal

Наибольший нужный сигнал связи обратного вида MaxFBVal

Величина значения ПИД (установленная частота).

Установленную частоту можно изменять операторами наклона и перемещения опции преобразования.

Направление момента вращения установки вентилятора не изменяется, лучше применять AVI вход с заданием значения PR 02-00=01.

PR10-01 (наибольшая частота).

Задать в PR01-00 величину наибольшей частоты механизма вентиляции (PR01-00 = 50 герц).

Наименьшая частота.

Наименьшая частота не оказывает влияния на действие регулировки.

Наклон и перемещение опции преобразования.

Задать PR04-00 AVI перемещение интервала.

PR04-01 AVI полярность.

PR04-02 AVI корректировка наклона.

Вращение производится в одну сторону, PR04-03 = 0 (по заводским настройкам).

Величина уставки.

Для установки величины входа интервал частоты рассчитывается 0-100%.

Установка значения уставки.

При функционировании вентилятора давлению в 1500 Ра равен сигнал датчика 10,67 мА. Величине уставки 1500 Ра равна частота выхода 42%*50 герц = 21 герц и 84%*50 герц = 42 герц.

Можно устанавливать значение в Ра. Если 100% интервала равно 2000 Ра, то при коэффициенте 00-05 = 2000/Fmax = 2000/50 = 40, установленная величина 1500 и задается 1500 Ра.

Интервал частоты выхода.

Верхняя граница частоты выхода при регулировке определяется формулой:

Fmax=Pr01-00хPr10-07.

ПИД-регулирование.

Ускорение – замедление.

При взаимодействии с регулированием ПИД нужно время ускорения и замедления устанавливать минимальным для качественной регулировки.

Настраивание регулятора.

  1. · Задать величину I для легкого отклика, без перерегулировки.
  2. · Значение параметра для вентилятора не нужно, из-за замедления процесса.
  3. · Задать другие значения величин.
  1. · Повышение Р разгоняет процесс, снижает ошибки.
  2. · При большом Р появляется неустойчивость процесса.
  3. · Снижение величины I ускоряет процесс, делает нестабильным.
  4. · Быстрота дает снижение Р и I.
  5. · Замедление вентилятора определяет большего значения Р.
  6. · Задайте время ускорения и замедления наименьшим.

tattooe.ru - Журнал современной молодежи