Лауреаты нобелевской премии в медицине. Премия по физиологии и медицине. Дрозофилы? Но премия же по медицине

Лауреатами Нобелевской премии по физиологии и медицине в 2018 году стали Джеймс Эллисон и Тасуку Хондзё за разработки в области терапии рака путем активации иммунного ответа. Прямая трансляция объявления победителя ведется на сайте Нобелевского комитета. Подробнее о заслугах ученых можно узнать в пресс-релизе Нобелевского комитета.

Ученые разработали принципиально новый подход к терапии рака, отличный от существовавших ранее радиотерапии и химиотерапии, который известен как «ингибирование чекпойнтов» клеток иммунитета (немного об этом механизме можно прочитать в нашем , посвященном иммунотерапии). Их исследования посвящены тому, как устранить подавление активности клеток иммунной системы со стороны раковых клеток. Японский иммунолог Тасуку Хондзё (Tasuku Honjo) из университета Киото открыл рецептор PD-1 (Programmed Cell Death Protein-1) на поверхности лимфоцитов, активация которого приводит к подавлению их активности. Его американский коллега Джеймс Эллисон (James Allison) из Андерсоновского ракового центра университета Техаса впервые показал,что антитело, блокирующее ингибиторный комплекс CTLA-4 на поверхности Т-лимфоцитов, введенное в организм животных с опухолью, приводит к активации противоопухолевого ответа и уменьшению опухоли.

Исследования этих двух иммунологов привели к появлению нового класса противораковых препаратов на базе антител, связывающихся с белками на поверхности лимфоцитов, либо раковых клеток. Первый такой препарат, ипилимумаб - антитело, блокирующее CTLA-4, был одобрен в 2011 году для лечения меланомы. Антитело против PD-1, Ниволумаб, было одобрено в 2014 году против меланомы, рака легкого, почки и некоторых других типов рака.

«Раковые клетки, с одной стороны, отличаются от наших собственных, с другой стороны, являются ими. Клетки нашей иммунной системы эту раковую клетку узнают, но не убивают, - пояснил N+1 профессор Сколковского института наук и технологий и университета Ратгерса Константин Северинов. - Авторы в числе прочего открыли белок PD-1: если убрать этот белок, то иммунные клетки начинают узнавать раковые клетки и могут их убить. На этом основана терапия рака, которая сейчас широко используется даже в России. Такие препараты, ингибирующие PD-1, стали существенным компонентом современного арсенала борьбы с раком. Он очень важный, без него было бы гораздо хуже. Эти люди действительно подарили нам новый способ контроля над раком - люди живут, потому что есть вот такие терапии».

Онколог Михаил Масчан, заместитель директора Центра детской гематологии, онкологии и иммунологии имени Димы Рогачева, говорит, что иммуннотерапия стала революцией в области лечения рака.

«В клинической онкологии это одно из крупнейших событий в истории. Мы сейчас только начинаем пожинать плоды, которые принесла разработка этого типа терапии, но то, что она перевернула ситуацию в онкологии, стало ясно еще около десяти лет назад - когда появились первые клинические результаты применения лекарств, созданных на основе этих идей», - сказал Масчан в беседе с N+1 .

По его словам, с помощью комбинации чекпойнт-ингибиторов долгосрочная выживаемость, то есть фактически выздоровление, может быть достигнута у 30-40 процентов пациентов с некоторыми видами опухолей, в частности, меланомой и раком легкого. Он отметил, что в ближайшем будущем появятся новые разработки, основанные на этом подходе.

«Это самое начало пути, но уже есть много видов опухолей - и рак легкого и меланома, и ряд других, при которых терапия показала эффективность, но еще больше - при которых она только исследуется, исследуются ее комбинации с обычными видами терапии. Это самое начало, и очень многообещающее начало. Число людей, которые выжили благодаря этой терапии, уже сейчас измеряется десятками тысяч», - сказал Масчан.

Каждый год в преддверие объявления лауреатов аналитики пытаются угадать, кому будет вручена премия. В этом году агентство Clarivate Analytics, которое традиционно делает прогнозы на основании цитируемости научных работ, включило в «Нобелевский список» Наполеоне Феррара, который открыл ключевой фактор формирования кровеносных сосудов, Минору Канехиса, который создал базу данных KEGG, и Саломона Снайдера, который занимался рецепторами для ключевых регуляторных молекул в нервной системе. Интересно, что Джеймса Эллисона агентство указало в качестве возможного лауреата Нобелевской премии в 2016 году, то есть в его отношении прогноз сбылся довольно скоро. Кого агентство прочит в лауреаты по остальным нобелевским дисциплинам - физике, химии и экономике, можно узнать из нашего блога . По литературе в этом году премию вручать .

Дарья Спасская

В 2016 году Нобелевский комитет присудил премию по физиологии и медицине японскому ученому Ёсинори Осуми за открытие аутофагии и расшифровку ее молекулярного механизма. Аутофагия - процесс переработки отработавших органелл и белковых комплексов, он важен не только для экономного ведения клеточного хозяйства, но и для обновления клеточной структуры. Расшифровка биохимии этого процесса и его генетической основы предполагает возможность контроля и управления всем процессом и его отдельными стадиями. И это дает исследователям очевидные фундаментальные и прикладные перспективы.

Наука несется вперед такими невероятными темпами, что неспециалист не успевает осознать важность открытия, а за него уже присуждается Нобелевская премия. В 80-х годах прошлого века в учебниках биологии в разделе о строении клетки можно было среди прочих органелл узнать о лизосомах - мембранных пузырьках, заполненных внутри ферментами. Эти ферменты нацелены на расщепление различных крупных биологических молекул на более мелкие блоки (нужно отметить, что тогда наша учительница по биологии еще не знала, зачем нужны лизосомы). Их открыл Кристиан де Дюв , за что в 1974 году ему была присуждена Нобелевская премия по физиологии и медицине.

Кристиан де Дюв с коллегами отделял лизосомы и пероксисомы от других клеточных органелл с помощью нового тогда метода - центрифугирования , позволяющего рассортировать частицы по массе. Лизосомы теперь широко используются в медицине. Например, на их свойствах основана адресная доставка лекарств к поврежденным клеткам и тканям: молекулярный препарат помещают внутрь лизосомы за счет разницы в кислотности внутри и снаружи нее, а затем лизосома, снабженная специфическими метками, отправляется в пораженные ткани.

Лизосомы по роду своей деятельности неразборчивы - они дробят на составные части любые молекулы и молекулярные комплексы. Более узкие «специалисты» - протеасомы , которые нацелены только на расщепление белков (см.: , «Элементы», 05.11.2010). Их роль в клеточном хозяйстве трудно переоценить: они следят за отслужившими свой срок ферментами и уничтожают их по мере необходимости. Этот срок, как мы знаем, определен весьма точно - ровно столько времени, сколько клетка выполняет конкретную задачу. Если бы ферменты не уничтожались по ее выполнении, то идущий синтез трудно было бы остановить вовремя.

Протеасомы имеются во всех без исключения клетках, даже в тех, где нет лизосом. Роль протеасом и биохимический механизм их работы был исследован Аароном Чехановером , Аврамом Гершко и Ирвином Роузом в конце 1970-х - начале 1980-х годов. Они открыли, что протеасомы узнают и уничтожают те белки, которые помечены белком убиквитином . Реакция связывания с убиквитином идет с затратами АТФ . В 2004 году эти трое ученых получили Нобелевскую премию по химии за исследования убиквитин-зависимой деградации белков. В 2010 году, просматривая школьную программу для одаренных английских детей, я усмотрела на картинке строения клетки ряд черных точек, которые были помечены как протеасомы. Однако школьная учительница в той школе не смогла объяснить ученикам, что это такое и для чего эти загадочные протеасомы нужны. С лизосомами на той картинке уже никаких вопросов не возникло.

Еще в начале исследования лизосом было замечено, что внутри некоторых из них заключены части клеточных органелл. Значит, в лизосомах разбираются на части не только крупные молекулы, но и части самой клетки. Процесс переваривания собственных клеточных структур получил название аутофагия - то есть «поедание самого себя». Как в лизосому, содержащую гидролазы, попадают части клеточных органелл? Этим вопросом еще в 80-е годы начал заниматься , изучавший устройство и функции лизосом и аутофагосом в клетках млекопитающих. Он со своими коллегами показал, что в клетках в массе появляются аутофагосомы, если их выращивать на малопитательной среде. В связи с этим появилась гипотеза, что аутофагосомы формируются, когда необходим резервный источник питания - белки и жиры, входящие в состав лишних органелл. Как формируются эти аутофагосомы, нужны ли они в качестве источника дополнительного питания или для иных клеточных целей, как их находят лизосомы для переваривания? Все эти вопросы в начале 90-х годов не имели ответов.

Взявшись за самостоятельные исследования, Осуми сфокусировал усилия на изучении аутофагосом дрожжей. Он рассудил, что аутофагия должна быть консервативным клеточным механизмом, следовательно, ее удобнее изучать на простых (относительно) и удобных лабораторных объектах.

У дрожжей аутофагосомы находятся внутри вакуолей, а затем там распадаются. Их утилизацией занимаются различные ферменты-протеиназы . Если в клетке протеиназы дефектные, то аутофагосомы накапливаются внутри вакуолей и не растворяются. Осуми воспользовался этим свойством для получения культуры дрожжей с повышенным числом аутофагосом. Он выращивал культуры дрожжей на бедных средах - в этом случае аутофагосомы появляются в изобилии, доставляя голодающей клетке пищевой резерв. Но в его культурах использовались мутантные клетки с неработающими протеиназами. Так что в результате клетки быстро накапливали в вакуолях массу аутофагосом.

Аутофагосомы, как следовало из его наблюдений, окружены однослойными мембранами, внутри которых может находиться самые разнообразное содержимое: рибосомы, митохондрии, гранулы липидов и гликогена. Добавляя или убирая ингибиторы протеаз в культуры немутантных клеток, можно добиться увеличения или уменьшения числа аутофагосом. Так что в этих экспериментах было продемонстрировано, что эти клеточные тельца перевариваются с помощью ферментов-протеиназ.

Очень быстро, всего за год, используя метод случайного мутирования, Осуми выявил 13–15 генов (APG1–15) и соответствующих белковых продуктов, участвующих в образовании аутофагосом (M. Tsukada, Y. Ohsumi, 1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae ). Среди колоний клеток с дефектной протеиназной активностью он под микроскопом отбирал такие, в которых не было аутофагосом. Затем, культивируя их по отдельности, выяснял, какие гены у них испорчены. Еще пять лет понадобилось его группе, чтобы расшифровать в первом приближении молекулярный механизм работы этих генов.

Удалось выяснить, как устроен этот каскад, в каком порядке и как эти белки друг с другом связываются, чтобы в результате получилась аутофагосома. К 2000 году прояснилась картина формирования мембраны вокруг испорченных органелл, подлежащих переработке. Одинарная липидная мембрана начинает растягиваться вокруг этих органелл, постепенно окружая их, пока концы мембраны не приблизятся друг к другу и не сольются, образовав двойную мембрану аутофагосомы. Затем этот пузырек транспортируется к лизосоме и сливается с ней.

В процессе образования мембраны участвуют APG-белки, аналоги которых Ёсинори Осуми с коллегами обнаружили и у млекопитающих.

Благодаря работам Осуми мы увидели весь процесс аутофагии в динамике. Стартовой точкой исследований Осуми был простой факт присутствия в клетках загадочных мелких телец. Теперь исследователи получили возможность, пусть и гипотетическую, управлять всем процессом аутофагии.

Аутофагия необходима для нормальной жизнедеятельности клетки, так как клетка должна уметь не только обновлять свое биохимическое и архитектурное хозяйство, но и утилизировать ненужное. В клетке тысячи износившихся рибосом и митохондрий, мембранных белков, отработанных молекулярных комплексов - всех их нужно экономно переработать и снова пустить в оборот. Это своего рода клеточный ресайклинг. Этот процесс не только обеспечивает известную экономию, но и предотвращает быстрое старение клетки. Нарушение клеточной аутофагии у человека приводит к развитию болезни Паркинсона, диабета II типа, раковых заболеваний и некоторых нарушений, свойственных пожилому возрасту. Управление процессом клеточной аутофагии, очевидно, имеет огромные перспективы, как в фундаментальном, так и в прикладном отношении.

Нобелевский комитет сегодня определился с лауреатами премии по физиологии и медицине 2017 года. В этом году премия снова отправится в США: награду разделили Майкл Янг из Рокфеллеровского университета в Нью-Йорке, Майкл Росбаш из Университета Брэндейса и Джеффри Холл из Университета штата Мэн. Согласно решению Нобелевского комитета, эти исследователи награждены «за открытия молекулярных механизмов, контролирующих циркадные ритмы»..

Нужно сказать, что за всю 117-летнюю историю Нобелевской премии это, пожалуй, первая премия за изучение цикла «сон-бодрствование», как и вообще за что-либо связанное с сном. Не получил премию знаменитый сомнолог Натаниэль Клейтман, а совершивший самое выдающееся открытие в этой области Юджин Азеринский, открывший REM-сон (REM - rapid eye movement, фаза быстрого сна), вообще получил за свое достижение лишь степень PhD. Неудивительно, что в многочисленных прогнозах (о них мы в своей заметке) звучали какие угодно фамилии и какие угодно темы исследований, но не те, которые привлекли внимание Нобелевского комитета.

За что дали премию?

Итак, что же такое циркадные ритмы и что конкретно открыли лауреаты, которые, по словам секретаря Нобелевского комитета, встретили известие о награде словами «Are you kidding me?».

Джеффри Холл, Майкл Росбаш, Майкл Янг

Circa diem с латинского переводится как «вокруг дня». Так уж сложилось, что мы живем на планете Земля, на которой день сменяется ночью. И в ходе приспособления к разным условиям дня и ночи у организмов и появились внутренние биологические часы - ритмы биохимической и физиологической активности организма. Показать, что у этих ритмов исключительно внутренняя природа, удалось только в 1980-х, отправив на орбиту грибы Neurospora crassa . Тогда стало ясно, что циркадные ритмы не зависят от внешних световых или других геофизических сигналов.

Генетический механизм циркадных ритмов обнаружили в 1960–1970-х годах Сеймур Бензер и Рональд Конопка, которые изучали мутантные линии дрозофил с отличающимися циркадными ритмами: у мушек дикого типа колебания циркадного ритма имели период 24 часа, у одних мутантов - 19 часов, у других - 29 часов, а у третьих ритм вообще отсутствовал. Оказалось, что ритмы регулируются геном PER - period . Следующий шаг, который помог понять, как появляются и поддерживаются такие колебания циркадного ритма, сделали нынешние лауреаты.

Саморегулирующийся часовой механизм

Джеффри Холл и Майкл Росбаш предположили, что кодируемый геном period белок PER блокирует работу собственного гена, и такая петля обратной связи позволяет белку предотвращать собственный синтез и циклически, непрерывно регулировать свой уровень в клетках.

Картинка показывает последовательность событий за 24 часа колебаний. Когда ген активен, производится м-РНК PER. Она выходит из ядра в цитоплазму, становясь матрицей для производства белка PER. Белок PER накапливается в ядре клетки, когда активность гена period заблокирована. Это и замыкает петлю обратной связи.

Модель была очень привлекательной, но для полной картины не хватало нескольких деталей паззла. Чтобы заблокировать активность гена, белку нужно пробраться в ядро клетки, где хранится генетический материал. Джеффри Холл и Майкл Росбаш показали, что белок PER накапливается в ядре за ночь, но не понимали, как ему удается попадать туда. В 1994 году Майкл Янг открыл второй ген циркадного ритма, timeless (англ. «безвременный»). Он кодирует белок TIM, который нужен для нормальной работы наших внутренних часов. В своем изящном эксперименте Янг продемонстрировал, что, только связавшись друг с другом, TIM и PER в паре могут проникнуть в ядро клетки, где они и блокируют ген period .

Упрощенная иллюстрация молекулярных компонентов циркадных ритмов

Такой механизм обратной связи объяснил причину появления колебаний, но было непонятно, что же контролирует их частоту. Майкл Янг нашел другой ген, doubletime . В нем «записан» белок DBT, который может задержать накапливание белка PER. Так и происходит «отладка» колебаний, чтобы они совпадали с суточным циклом. Эти открытия совершили переворот в нашем понимании ключевых механизмов биологических часов человека. В течение последующих лет были найдены и другие белки, которые влияют на этот механизм и поддерживают его стабильную работу.

Например, лауреаты этого года обнаружили дополнительные белки, которые заставляют ген period работать, и белки, с помощью которых свет синхронизирует биологические часы (или при резкой смене часовых поясов вызывает джетлаг).

О премии

Напомним, что Нобелевская премия по физиологии и медицине (стоит заметить, что в оригинальном названии на месте «и» звучит предлог «или») - одна из пяти премий, определенных завещанием Альфреда Нобеля 1895 года и, если следовать букве документа, должна ежегодно вручаться «за открытие или изобретение в области физиологии и медицины», сделанное в предыдущий год и принесшее максимальную пользу человечеству. Впрочем, «принцип прошлого года» не соблюдался, кажется, почти никогда.

Сейчас премия по физиологии и медицине традиционно присуждается в самом начале нобелевской недели, в первый понедельник октября. Впервые ее вручили в 1901 году за создание сывороточной терапии дифтерии. Всего за всю историю премия была вручена 108 раз, в девяти случаях: в 1915, 1916, 1917, 1918, 1921, 1925, 1940, 1941 и 1942 годах - премия не присуждалась.

За 1901–2017 годы премия присуждена 214 ученым, дюжина из которых - женщины. Пока что не было случая, чтобы кто-то получил премию по медицине дважды, хотя случаи, когда номинировали уже действующего лауреата, были (например, наш ). Если не учитывать премию 2017 года, то средний возраст лауреата составил 58 лет. Самым молодым нобелиатом в области физиологии и медицины стал лауреат 1923 года Фредерик Бантинг (премия за открытие инсулина, возраст - 32 года), самым пожилым - лауреат 1966 года Пейтон Роус (премия за открытие онкогенных вирусов, возраст - 87 лет).

В 2017 году Нобелевской премии по медицине удостоились три американских учёных, открывших молекулярные механизмы, отвечающие за циркадный ритм - биологические часы человека. Эти механизмы регулируют сон и бодрствование, работу гормональной системы, температуру тела и другие параметры человеческого организма, которые изменяются в зависимости от времени суток. Подробнее об открытии учёных - в материале RT.

Победители Нобелевской премии по физиологии и медицине Reuters Jonas Ekstromer

Нобелевский комитет Каролинского института Стокгольма в понедельник, 2 октября, сообщил, что Нобелевская премия 2017 года в области физиологии и медицины присуждена американским учёным Майклу Янгу, Джеффри Холлу и Майклу Росбашу за открытия молекулярных механизмов, контролирующих циркадный ритм.

«Они смогли проникнуть внутрь биологических часов организма и объяснить их работу», — отметили в комитете.

Циркадными ритмами называются циклические колебания различных физиологических и биохимических процессов в организме, связанных со сменой дня и ночи. Почти в каждом органе человеческого организма есть клетки, обладающие индивидуальным молекулярным часовым механизмом, а следовательно, циркадные ритмы представляют собой биологический хронометр.

Согласно релизу Каролинского института, Янгу, Холлу и Росбашу удалось изолировать у мух-дрозофилах ген, контролирующий выделение особого белка в зависимости от времени суток.

«Таким образом, учёным удалось опознать белковые соединения, которые участвуют в работе этого механизма, и понять работу самостоятельной механики этого явления внутри каждой отдельной клетки. Теперь мы знаем, что биологические часы работают по такому же принципу в клетках других многоклеточных организмов, включая людей», — говорится в релизе комитета, присудившего премию.

  • Муха-дрозофила
  • globallookpress.com
  • imagebroker/Alfred Schauhuber

Наличие биологических часов у живых организмов было установлено в конце прошлого века. Они расположены в так называемом супрахиазматическом ядре гипоталамуса головного мозга. Ядро получает информацию об уровне освещения от рецепторов на сетчатке глаза и посылает сигнал другим органам с помощью нервных импульсов и гормональных изменений.

Кроме того, некоторые клетки ядра, как и клетки других органов, обладают собственными биологическими часами, работу которых обеспечивают белки, активность которых меняется в зависимости от времени суток. От активности этих белков зависит синтез других белковых связей, которые порождают циркадные ритмы жизнедеятельности отдельных клеток и целых органов. Так, например, пребывание в помещении с ярким освещением в ночное время может сдвинуть циркадный ритм, активируя белковый синтез генов PER, обычно начинающийся утром.

Также на циркадные ритмы в организме млекопитающих значительную роль оказывает печень. Например, грызуны вроде мышей или крыс являются ночными животными и едят в тёмное время суток. Но если пища становится доступна только днём, их циркадный цикл печени смещается на 12 часов.

Ритм жизни

Циркадные ритмы — это суточные изменения деятельности организма. Они включают регуляцию сна и бодрствования, выделения гормонов, температуры тела и других параметров, которые изменяются в соответствии с суточным ритмом, поясняет врач-сомнолог Александр Мельников. Он отметил, что исследователи вели разработки в этом направлении несколько десятков лет.

«Прежде всего, нужно отметить, что это открытие не вчерашнего и не сегодняшнего дня. Эти исследования велись многие десятилетия — с 80-х годов прошлого века до настоящего времени — и позволили открыть один из глубинных механизмов, регулирующих природу организма человека и других живых существ. Механизм, которые открыли учёные, очень важен для влияния на суточный ритм организма», — рассказал Мельников.

  • pixabay.com

По словам эксперта, эти процессы происходят не только из-за смены дня и ночи. Даже в условиях полярной ночи суточные ритмы будут продолжать действовать.

«Эти факторы очень важны, но очень часто у людей они нарушены. Эти процессы регулируются на генном уровне, что подтвердили лауреаты премии. В наше время люди очень часто меняют часовые пояса и подвергаются разным стрессам, связанным с резкими изменениями циркадного ритма. Напряжённый ритм современной жизни может влиять на правильность регулировки и возможности для отдыха организма», — заключил Мельников. Он уверен, что исследование Янга, Холла и Росбаша даёт возможность для разработки новых механизмов воздействия на ритмы человеческого организма.

История премии

Учредитель премии Альфред Нобель в своём завещании поручил выбор лауреата по физиологии и медицине Каролинскому институту в Стокгольме, основанному в 1810 году и являющемуся одним из ведущих образовательных и научных медицинских центров мира. Нобелевский комитет университета состоит из пяти постоянных членов, которые, в свою очередь, имеют право приглашать экспертов для консультаций. В списке номинантов на премию в этом году было 361 имя.

Нобелевская премия в области медицины присуждалась 107 раз 211 ученым. Её первым лауреатом стал в 1901 году немецкий врач Эмиль Адольф фон Беринг, разработавший способ иммунизации против дифтерии. Комитет Каролинского института считает самой значимой премию 1945 года, присуждённую британским учёным Флемингу, Чейну и Флори за открытие пенициллина. Некоторые премии со временем стали неактуальными, как, например, награда, присуждённая в 1949 году за разработку метода лоботомии.

В 2017 году размер премии был увеличен с 8 млн до 9 млн шведских крон (около $1,12 млн).

Церемония награждения лауреатов по традиции состоится 10 декабря — в день кончины Альфреда Нобеля. Премии в области физиологии и медицины, физики, химии и литературы будут вручены в Стокгольме. Премия мира, согласно завещанию Нобеля, вручается в тот же день в Осло.

Подпишитесь на нас

tattooe.ru - Журнал современной молодежи